基于二值化神经网络的自动驾驶汽车FPGA设计

Kaijie Wei, Koki Honda, H. Amano
{"title":"基于二值化神经网络的自动驾驶汽车FPGA设计","authors":"Kaijie Wei, Koki Honda, H. Amano","doi":"10.1109/FPT.2018.00091","DOIUrl":null,"url":null,"abstract":"We propose an autonomous vehicle controlled by FPGAs. In our design, considering embedded systems, we apply the binarized neural networks (BNNs) which can realize a satis-fying result in high speed and accuracy to recognize pedestrians and some obstacles on a given road. To detect the traffic light, a passive camera-based pipeline is applied. Furthermore, the implementation of road lane detection is based on color selection algorithm, Canny Edge Detection, and Hough Transformation. The proposed design is realized by two Xilinx boards: PYNQ-Z1 and Zynq-Xc7Z010. These two FPGA boards cooperate with each other through a shared network cable. In the proposed design, the resource used by Zynq-Xc7Z010 can be greatly reduced and the inference time on the FPGA has been thousands times faster than the software implementation.","PeriodicalId":434541,"journal":{"name":"2018 International Conference on Field-Programmable Technology (FPT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"FPGA Design for Autonomous Vehicle Driving Using Binarized Neural Networks\",\"authors\":\"Kaijie Wei, Koki Honda, H. Amano\",\"doi\":\"10.1109/FPT.2018.00091\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose an autonomous vehicle controlled by FPGAs. In our design, considering embedded systems, we apply the binarized neural networks (BNNs) which can realize a satis-fying result in high speed and accuracy to recognize pedestrians and some obstacles on a given road. To detect the traffic light, a passive camera-based pipeline is applied. Furthermore, the implementation of road lane detection is based on color selection algorithm, Canny Edge Detection, and Hough Transformation. The proposed design is realized by two Xilinx boards: PYNQ-Z1 and Zynq-Xc7Z010. These two FPGA boards cooperate with each other through a shared network cable. In the proposed design, the resource used by Zynq-Xc7Z010 can be greatly reduced and the inference time on the FPGA has been thousands times faster than the software implementation.\",\"PeriodicalId\":434541,\"journal\":{\"name\":\"2018 International Conference on Field-Programmable Technology (FPT)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Field-Programmable Technology (FPT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FPT.2018.00091\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Field-Programmable Technology (FPT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FPT.2018.00091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

我们提出了一种由fpga控制的自动驾驶汽车。在我们的设计中,考虑到嵌入式系统,我们将二值化神经网络(BNNs)用于识别给定道路上的行人和某些障碍物,该方法在速度和精度上都取得了令人满意的结果。为了检测交通信号灯,采用了一种基于被动摄像机的流水线。此外,基于颜色选择算法、Canny边缘检测和Hough变换实现道路车道检测。该设计由两个Xilinx板PYNQ-Z1和Zynq-Xc7Z010实现。这两块FPGA板通过共享的网线相互协作。在提出的设计中,Zynq-Xc7Z010使用的资源可以大大减少,并且FPGA上的推理时间比软件实现快数千倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
FPGA Design for Autonomous Vehicle Driving Using Binarized Neural Networks
We propose an autonomous vehicle controlled by FPGAs. In our design, considering embedded systems, we apply the binarized neural networks (BNNs) which can realize a satis-fying result in high speed and accuracy to recognize pedestrians and some obstacles on a given road. To detect the traffic light, a passive camera-based pipeline is applied. Furthermore, the implementation of road lane detection is based on color selection algorithm, Canny Edge Detection, and Hough Transformation. The proposed design is realized by two Xilinx boards: PYNQ-Z1 and Zynq-Xc7Z010. These two FPGA boards cooperate with each other through a shared network cable. In the proposed design, the resource used by Zynq-Xc7Z010 can be greatly reduced and the inference time on the FPGA has been thousands times faster than the software implementation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信