基于支持向量机的双谱特征手语手势识别

Hasmath Farhana Thariq Ahmed, Hafisoh Ahmad, S. K. Phang, C. Vaithilingam, Houda Harkat, Kulasekharan Narasingamurthi
{"title":"基于支持向量机的双谱特征手语手势识别","authors":"Hasmath Farhana Thariq Ahmed, Hafisoh Ahmad, S. K. Phang, C. Vaithilingam, Houda Harkat, Kulasekharan Narasingamurthi","doi":"10.1063/5.0002344","DOIUrl":null,"url":null,"abstract":". Wi-Fi based sensing system captures the signal reflections due to human gestures as Channel State Information (CSI) values in subcarrier level for accurately predicting the fine-grained gestures. The proposed work explores the Higher Order Statistical (HOS) method by deriving bispectrum features (BF) from raw signal by adopting a Conditional Informative Feature Extraction (CIFE) technique from information theory to form a subset of informative and best features. Support Vector Machine (SVM) classifier is adopted in the present work for classifying the gesture and to measure the prediction accuracy. The present work is validated on a secondary dataset, SignFi, having data collected from two different environments with varying number of users and sign gestures. SVM reports an overall accuracy of 83.8%, 94.1%, 74.9% and 75.6% in different environments/scenarios.","PeriodicalId":282583,"journal":{"name":"13TH INTERNATIONAL ENGINEERING RESEARCH CONFERENCE (13TH EURECA 2019)","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sign language gesture recognition with bispectrum features using SVM\",\"authors\":\"Hasmath Farhana Thariq Ahmed, Hafisoh Ahmad, S. K. Phang, C. Vaithilingam, Houda Harkat, Kulasekharan Narasingamurthi\",\"doi\":\"10.1063/5.0002344\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". Wi-Fi based sensing system captures the signal reflections due to human gestures as Channel State Information (CSI) values in subcarrier level for accurately predicting the fine-grained gestures. The proposed work explores the Higher Order Statistical (HOS) method by deriving bispectrum features (BF) from raw signal by adopting a Conditional Informative Feature Extraction (CIFE) technique from information theory to form a subset of informative and best features. Support Vector Machine (SVM) classifier is adopted in the present work for classifying the gesture and to measure the prediction accuracy. The present work is validated on a secondary dataset, SignFi, having data collected from two different environments with varying number of users and sign gestures. SVM reports an overall accuracy of 83.8%, 94.1%, 74.9% and 75.6% in different environments/scenarios.\",\"PeriodicalId\":282583,\"journal\":{\"name\":\"13TH INTERNATIONAL ENGINEERING RESEARCH CONFERENCE (13TH EURECA 2019)\",\"volume\":\"74 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"13TH INTERNATIONAL ENGINEERING RESEARCH CONFERENCE (13TH EURECA 2019)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0002344\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"13TH INTERNATIONAL ENGINEERING RESEARCH CONFERENCE (13TH EURECA 2019)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0002344","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

. 基于Wi-Fi的传感系统将人体手势的信号反射捕获为子载波级的信道状态信息(CSI)值,用于准确预测细粒度手势。提出的工作探索了高阶统计(HOS)方法,通过采用信息论中的条件信息特征提取(CIFE)技术从原始信号中获得双谱特征(BF),从而形成信息和最佳特征子集。本文采用支持向量机(SVM)分类器对手势进行分类,并对手势的预测精度进行测量。目前的工作在次要数据集SignFi上进行了验证,该数据集从两个不同的环境中收集,具有不同数量的用户和手势。SVM在不同环境/场景下的总体准确率分别为83.8%、94.1%、74.9%和75.6%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sign language gesture recognition with bispectrum features using SVM
. Wi-Fi based sensing system captures the signal reflections due to human gestures as Channel State Information (CSI) values in subcarrier level for accurately predicting the fine-grained gestures. The proposed work explores the Higher Order Statistical (HOS) method by deriving bispectrum features (BF) from raw signal by adopting a Conditional Informative Feature Extraction (CIFE) technique from information theory to form a subset of informative and best features. Support Vector Machine (SVM) classifier is adopted in the present work for classifying the gesture and to measure the prediction accuracy. The present work is validated on a secondary dataset, SignFi, having data collected from two different environments with varying number of users and sign gestures. SVM reports an overall accuracy of 83.8%, 94.1%, 74.9% and 75.6% in different environments/scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信