小波:概览

L. Auslander
{"title":"小波:概览","authors":"L. Auslander","doi":"10.1109/MDSP.1989.97050","DOIUrl":null,"url":null,"abstract":"Summary form only given, as follows. The Heisenberg group and its representation theory plays an important role in the theory of Gabor expansions, ambiguity functions and Wigner distributions and wavelets built from translations in time and frequency. A multiplicative Heisenberg group whose representation theory can be used to study affine group wavelets and wideband ambiguity functions is defined. The standard Zac transform can be interpreted as an intertwining operator between two unitary representations of the Heisenberg group. A multiplicative Zac transform that plays an analogous role for the multiplicative Heisenberg group is constructed.<<ETX>>","PeriodicalId":340681,"journal":{"name":"Sixth Multidimensional Signal Processing Workshop,","volume":"11 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1989-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wavelets: a general overview\",\"authors\":\"L. Auslander\",\"doi\":\"10.1109/MDSP.1989.97050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary form only given, as follows. The Heisenberg group and its representation theory plays an important role in the theory of Gabor expansions, ambiguity functions and Wigner distributions and wavelets built from translations in time and frequency. A multiplicative Heisenberg group whose representation theory can be used to study affine group wavelets and wideband ambiguity functions is defined. The standard Zac transform can be interpreted as an intertwining operator between two unitary representations of the Heisenberg group. A multiplicative Zac transform that plays an analogous role for the multiplicative Heisenberg group is constructed.<<ETX>>\",\"PeriodicalId\":340681,\"journal\":{\"name\":\"Sixth Multidimensional Signal Processing Workshop,\",\"volume\":\"11 4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1989-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sixth Multidimensional Signal Processing Workshop,\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MDSP.1989.97050\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sixth Multidimensional Signal Processing Workshop,","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MDSP.1989.97050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

仅给出摘要形式,如下。海森堡群及其表示理论在Gabor展开、模糊函数、Wigner分布和由时间和频率平移构建的小波理论中起着重要作用。定义了一个乘法海森堡群,其表示理论可用于研究仿射群小波和宽带模糊函数。标准Zac变换可以被解释为海森堡群的两个酉表示之间的缠结算子。构造了一个与乘法海森堡群类似的乘法Zac变换。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Wavelets: a general overview
Summary form only given, as follows. The Heisenberg group and its representation theory plays an important role in the theory of Gabor expansions, ambiguity functions and Wigner distributions and wavelets built from translations in time and frequency. A multiplicative Heisenberg group whose representation theory can be used to study affine group wavelets and wideband ambiguity functions is defined. The standard Zac transform can be interpreted as an intertwining operator between two unitary representations of the Heisenberg group. A multiplicative Zac transform that plays an analogous role for the multiplicative Heisenberg group is constructed.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信