利用机器学习改进先进晶圆厂宽带等离子体检测的在线检测

SM Guo, Jx Liu, R. Navalakhe, A. Lee, B. Tsai, Mahatma Lin, M. Plihal, Jianyun Zhou
{"title":"利用机器学习改进先进晶圆厂宽带等离子体检测的在线检测","authors":"SM Guo, Jx Liu, R. Navalakhe, A. Lee, B. Tsai, Mahatma Lin, M. Plihal, Jianyun Zhou","doi":"10.1109/ASMC.2019.8791796","DOIUrl":null,"url":null,"abstract":"For inline defect inspection it is important to achieve a high capture rate of defects of interest (DOI) at low nuisance rate to increase production efficiency. A broadband plasma (BBP) wafer defect inspection system with Inline Defect Organizer™ (iDO) can separate DOI and nuisance defects into different bins.However, high expertise is required to set up an effective iDO™ classifier. Traditional iDO setup complexity increases as design rules shrink. A novel approach is developed by adopting machine learning algorithms and SEM-classified defect data to create a new iDO classifier (a.k.a. iDO 2.0). The results are promising, showing that iDO 2.0 classifier outperforms the iDO in sensitivity, nuisance rate, ease of use, time to results and cross- device portability.","PeriodicalId":287541,"journal":{"name":"2019 30th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Inline Inspection Improvement using Machine Learning on Broadband Plasma Inspector in an Advanced Foundry Fab\",\"authors\":\"SM Guo, Jx Liu, R. Navalakhe, A. Lee, B. Tsai, Mahatma Lin, M. Plihal, Jianyun Zhou\",\"doi\":\"10.1109/ASMC.2019.8791796\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For inline defect inspection it is important to achieve a high capture rate of defects of interest (DOI) at low nuisance rate to increase production efficiency. A broadband plasma (BBP) wafer defect inspection system with Inline Defect Organizer™ (iDO) can separate DOI and nuisance defects into different bins.However, high expertise is required to set up an effective iDO™ classifier. Traditional iDO setup complexity increases as design rules shrink. A novel approach is developed by adopting machine learning algorithms and SEM-classified defect data to create a new iDO classifier (a.k.a. iDO 2.0). The results are promising, showing that iDO 2.0 classifier outperforms the iDO in sensitivity, nuisance rate, ease of use, time to results and cross- device portability.\",\"PeriodicalId\":287541,\"journal\":{\"name\":\"2019 30th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)\",\"volume\":\"67 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 30th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASMC.2019.8791796\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 30th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASMC.2019.8791796","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

对于在线缺陷检测来说,在低妨害率下实现高兴趣缺陷(DOI)捕获率是提高生产效率的重要途径。宽带等离子体(BBP)晶圆缺陷检测系统与内联缺陷组织者™(iDO)可以分离DOI和滋扰缺陷到不同的箱。然而,建立一个有效的iDO™分类器需要很高的专业知识。传统的iDO设置复杂性随着设计规则的缩减而增加。采用机器学习算法和sem分类的缺陷数据来创建新的iDO分类器(也称为iDO 2.0)。结果表明,iDO 2.0分类器在灵敏度、干扰率、易用性、获得结果的时间和跨设备可移植性方面优于iDO。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inline Inspection Improvement using Machine Learning on Broadband Plasma Inspector in an Advanced Foundry Fab
For inline defect inspection it is important to achieve a high capture rate of defects of interest (DOI) at low nuisance rate to increase production efficiency. A broadband plasma (BBP) wafer defect inspection system with Inline Defect Organizer™ (iDO) can separate DOI and nuisance defects into different bins.However, high expertise is required to set up an effective iDO™ classifier. Traditional iDO setup complexity increases as design rules shrink. A novel approach is developed by adopting machine learning algorithms and SEM-classified defect data to create a new iDO classifier (a.k.a. iDO 2.0). The results are promising, showing that iDO 2.0 classifier outperforms the iDO in sensitivity, nuisance rate, ease of use, time to results and cross- device portability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信