基于小波变换、奇异值分解和核主成分分析的人脸识别

Zhonghua Liu, Zhong Jin, Zhihui Lai, Chuanbo Huang, M. Wan
{"title":"基于小波变换、奇异值分解和核主成分分析的人脸识别","authors":"Zhonghua Liu, Zhong Jin, Zhihui Lai, Chuanbo Huang, M. Wan","doi":"10.1109/CCPR.2008.61","DOIUrl":null,"url":null,"abstract":"Combined with wavelet transform, singular value decomposition and kernel principal component analysis, a method for face recognition is presented. Firstly, the wavelet transformation is used to reduce the dimension of the face picture. Then, SVD is used to subtract the features of the lowest resolution subimage, and the singular value feature vector is mapped onto the feature space with kpca and obtains nonlinear feature . Finally, face recognition can be realized according to BP neural network method. Experimental results on ORL and YALE face-databases show that the recognition rate by the proposed method is higher than that by KPCA, SVD, WT-KPCA and WT-SVD respectively.","PeriodicalId":292956,"journal":{"name":"2008 Chinese Conference on Pattern Recognition","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Face Recognition Based on Wavelet Transform, Singular Value Decomposition and Kernel Principal Component Analysis\",\"authors\":\"Zhonghua Liu, Zhong Jin, Zhihui Lai, Chuanbo Huang, M. Wan\",\"doi\":\"10.1109/CCPR.2008.61\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Combined with wavelet transform, singular value decomposition and kernel principal component analysis, a method for face recognition is presented. Firstly, the wavelet transformation is used to reduce the dimension of the face picture. Then, SVD is used to subtract the features of the lowest resolution subimage, and the singular value feature vector is mapped onto the feature space with kpca and obtains nonlinear feature . Finally, face recognition can be realized according to BP neural network method. Experimental results on ORL and YALE face-databases show that the recognition rate by the proposed method is higher than that by KPCA, SVD, WT-KPCA and WT-SVD respectively.\",\"PeriodicalId\":292956,\"journal\":{\"name\":\"2008 Chinese Conference on Pattern Recognition\",\"volume\":\"73 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 Chinese Conference on Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCPR.2008.61\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Chinese Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCPR.2008.61","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

将小波变换、奇异值分解和核主成分分析相结合,提出了一种人脸识别方法。首先利用小波变换对人脸图像进行降维;然后,利用奇异值分解(SVD)对最低分辨率子图像的特征进行相减,利用kpca将奇异值特征向量映射到特征空间,得到非线性特征;最后,利用BP神经网络方法实现人脸识别。在ORL和YALE人脸数据库上的实验结果表明,该方法的识别率高于KPCA、SVD、WT-KPCA和WT-SVD。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Face Recognition Based on Wavelet Transform, Singular Value Decomposition and Kernel Principal Component Analysis
Combined with wavelet transform, singular value decomposition and kernel principal component analysis, a method for face recognition is presented. Firstly, the wavelet transformation is used to reduce the dimension of the face picture. Then, SVD is used to subtract the features of the lowest resolution subimage, and the singular value feature vector is mapped onto the feature space with kpca and obtains nonlinear feature . Finally, face recognition can be realized according to BP neural network method. Experimental results on ORL and YALE face-databases show that the recognition rate by the proposed method is higher than that by KPCA, SVD, WT-KPCA and WT-SVD respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信