具有ω形激活函数的前馈神经网络的性能

Yiwei Chen, F. Bastani
{"title":"具有ω形激活函数的前馈神经网络的性能","authors":"Yiwei Chen, F. Bastani","doi":"10.1109/TAI.1991.167096","DOIUrl":null,"url":null,"abstract":"The capability of the multilayer feedforward layered neural network with Omega -shaped activation functions is studied. The authors prove that a three layer neural network with any continuous Omega -shaped activation function can approximate any continuous function in the multidimensional real space. Further theoretical extensions to the generalized Omega -shaped function are also explored. One example of this kind of neural network is the Hermite network.<<ETX>>","PeriodicalId":371778,"journal":{"name":"[Proceedings] Third International Conference on Tools for Artificial Intelligence - TAI 91","volume":"104 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The capability of feedforward neural networks with Omega -shaped activation functions\",\"authors\":\"Yiwei Chen, F. Bastani\",\"doi\":\"10.1109/TAI.1991.167096\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The capability of the multilayer feedforward layered neural network with Omega -shaped activation functions is studied. The authors prove that a three layer neural network with any continuous Omega -shaped activation function can approximate any continuous function in the multidimensional real space. Further theoretical extensions to the generalized Omega -shaped function are also explored. One example of this kind of neural network is the Hermite network.<<ETX>>\",\"PeriodicalId\":371778,\"journal\":{\"name\":\"[Proceedings] Third International Conference on Tools for Artificial Intelligence - TAI 91\",\"volume\":\"104 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[Proceedings] Third International Conference on Tools for Artificial Intelligence - TAI 91\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TAI.1991.167096\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[Proceedings] Third International Conference on Tools for Artificial Intelligence - TAI 91","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TAI.1991.167096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

研究了具有ω形激活函数的多层前馈分层神经网络的性能。证明了具有任意连续欧米茄形激活函数的三层神经网络可以逼近多维实空间中的任意连续函数。对广义欧米茄形函数的进一步理论扩展也进行了探讨。这种神经网络的一个例子是赫米特网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The capability of feedforward neural networks with Omega -shaped activation functions
The capability of the multilayer feedforward layered neural network with Omega -shaped activation functions is studied. The authors prove that a three layer neural network with any continuous Omega -shaped activation function can approximate any continuous function in the multidimensional real space. Further theoretical extensions to the generalized Omega -shaped function are also explored. One example of this kind of neural network is the Hermite network.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信