Bo-Kyung Yoon, Jeehoon Jung, J. M. Baik, Katherine A. Kim
{"title":"基于降额因子的摩擦纳米发电机能量收集应用的仿真电路建模","authors":"Bo-Kyung Yoon, Jeehoon Jung, J. M. Baik, Katherine A. Kim","doi":"10.23919/icpe2019-ecceasia42246.2019.8796996","DOIUrl":null,"url":null,"abstract":"As the internet of things (IoT) gains popularity, many sensors and devices for a variety of applications need to be powered. Energy harvesting produces electric power from surrounding energy and is the key to powering many IoT devices. A triboelectric nanogenerator (TENG) is a newly-introduced device that harvests electric energy from vibrational energy using the principle of electrostatic energy. Here, the characteristics of the TENG are determined to model and simulate under realistic operation using derating factors. Simulations using the ideal TENG's circuit model diverge significantly from the actual experimental results. Thus, derating factors are introduced to minimize error between simulation and experimental results. Derating factors of the internal voltage source and the capacitor of the TENG are defined and swept over a range of values to find the values that best fit to the experimental results. For the contact-mode TENG, a voltage derating of 0.0054 and capacitor derating value of 1 resulted in the lowest error in terms of power output. The comparison of the simulation and experiment shows that the they are matched with an error of 1.14 × 10−13A for current, 0.157 V for voltage, and 3.81 × 10−13W for power.","PeriodicalId":423158,"journal":{"name":"2019 10th International Conference on Power Electronics and ECCE Asia (ICPE 2019 - ECCE Asia)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Realistic Circuit Modeling Using Derating Factors for Triboelectric Nanogenerators in Energy Harvesting Applications\",\"authors\":\"Bo-Kyung Yoon, Jeehoon Jung, J. M. Baik, Katherine A. Kim\",\"doi\":\"10.23919/icpe2019-ecceasia42246.2019.8796996\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As the internet of things (IoT) gains popularity, many sensors and devices for a variety of applications need to be powered. Energy harvesting produces electric power from surrounding energy and is the key to powering many IoT devices. A triboelectric nanogenerator (TENG) is a newly-introduced device that harvests electric energy from vibrational energy using the principle of electrostatic energy. Here, the characteristics of the TENG are determined to model and simulate under realistic operation using derating factors. Simulations using the ideal TENG's circuit model diverge significantly from the actual experimental results. Thus, derating factors are introduced to minimize error between simulation and experimental results. Derating factors of the internal voltage source and the capacitor of the TENG are defined and swept over a range of values to find the values that best fit to the experimental results. For the contact-mode TENG, a voltage derating of 0.0054 and capacitor derating value of 1 resulted in the lowest error in terms of power output. The comparison of the simulation and experiment shows that the they are matched with an error of 1.14 × 10−13A for current, 0.157 V for voltage, and 3.81 × 10−13W for power.\",\"PeriodicalId\":423158,\"journal\":{\"name\":\"2019 10th International Conference on Power Electronics and ECCE Asia (ICPE 2019 - ECCE Asia)\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 10th International Conference on Power Electronics and ECCE Asia (ICPE 2019 - ECCE Asia)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/icpe2019-ecceasia42246.2019.8796996\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 10th International Conference on Power Electronics and ECCE Asia (ICPE 2019 - ECCE Asia)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/icpe2019-ecceasia42246.2019.8796996","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Realistic Circuit Modeling Using Derating Factors for Triboelectric Nanogenerators in Energy Harvesting Applications
As the internet of things (IoT) gains popularity, many sensors and devices for a variety of applications need to be powered. Energy harvesting produces electric power from surrounding energy and is the key to powering many IoT devices. A triboelectric nanogenerator (TENG) is a newly-introduced device that harvests electric energy from vibrational energy using the principle of electrostatic energy. Here, the characteristics of the TENG are determined to model and simulate under realistic operation using derating factors. Simulations using the ideal TENG's circuit model diverge significantly from the actual experimental results. Thus, derating factors are introduced to minimize error between simulation and experimental results. Derating factors of the internal voltage source and the capacitor of the TENG are defined and swept over a range of values to find the values that best fit to the experimental results. For the contact-mode TENG, a voltage derating of 0.0054 and capacitor derating value of 1 resulted in the lowest error in terms of power output. The comparison of the simulation and experiment shows that the they are matched with an error of 1.14 × 10−13A for current, 0.157 V for voltage, and 3.81 × 10−13W for power.