使用深度学习预测生活方式杂志instagram帖子的受欢迎程度

S. De, Abhishek Maity, Vritti Goel, S. Shitole, A. Bhattacharya
{"title":"使用深度学习预测生活方式杂志instagram帖子的受欢迎程度","authors":"S. De, Abhishek Maity, Vritti Goel, S. Shitole, A. Bhattacharya","doi":"10.1109/CSCITA.2017.8066548","DOIUrl":null,"url":null,"abstract":"In this paper we use a Deep Neural Network (DNN) trained on data collected from the visual media-sharing social platform Instagram account of a popular Indian lifestyle magazine to predict the popularity of future posts. This predicted popularity of the post can be used to decide advertising rates and measure performance metrics important for publishing strategy decisions. The DNN primarily uses growth rate in subscriber base, tags associated with the post, time of day when the post was made, day of the week, color descriptors of the image, time between current and previous post, popularity of previous post as features for prediction. This covers majority of the causes of variation in popularity. Mini-batch gradient descend method is used to learn the weights in DNN and the objective function is cross-entropy. The network performs acceptable for real world applications and tolerances are within acceptable limits for the application.","PeriodicalId":299147,"journal":{"name":"2017 2nd International Conference on Communication Systems, Computing and IT Applications (CSCITA)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"Predicting the popularity of instagram posts for a lifestyle magazine using deep learning\",\"authors\":\"S. De, Abhishek Maity, Vritti Goel, S. Shitole, A. Bhattacharya\",\"doi\":\"10.1109/CSCITA.2017.8066548\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we use a Deep Neural Network (DNN) trained on data collected from the visual media-sharing social platform Instagram account of a popular Indian lifestyle magazine to predict the popularity of future posts. This predicted popularity of the post can be used to decide advertising rates and measure performance metrics important for publishing strategy decisions. The DNN primarily uses growth rate in subscriber base, tags associated with the post, time of day when the post was made, day of the week, color descriptors of the image, time between current and previous post, popularity of previous post as features for prediction. This covers majority of the causes of variation in popularity. Mini-batch gradient descend method is used to learn the weights in DNN and the objective function is cross-entropy. The network performs acceptable for real world applications and tolerances are within acceptable limits for the application.\",\"PeriodicalId\":299147,\"journal\":{\"name\":\"2017 2nd International Conference on Communication Systems, Computing and IT Applications (CSCITA)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 2nd International Conference on Communication Systems, Computing and IT Applications (CSCITA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSCITA.2017.8066548\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 2nd International Conference on Communication Systems, Computing and IT Applications (CSCITA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSCITA.2017.8066548","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

摘要

在本文中,我们使用深度神经网络(DNN)对从印度流行生活方式杂志的视觉媒体分享社交平台Instagram账户收集的数据进行训练,以预测未来帖子的受欢迎程度。这篇文章的预测受欢迎程度可以用来决定广告费率和衡量对发布策略决策很重要的性能指标。DNN主要使用用户基础的增长率,与帖子相关的标签,发布帖子的时间,一周中的哪一天,图像的颜色描述符,当前和上一篇帖子之间的时间,上一篇帖子的受欢迎程度作为预测的特征。这涵盖了受欢迎程度变化的大部分原因。在深度神经网络中,采用小批量梯度下降法学习权值,目标函数为交叉熵。网络的性能在实际应用中是可接受的,并且公差在应用的可接受范围内。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting the popularity of instagram posts for a lifestyle magazine using deep learning
In this paper we use a Deep Neural Network (DNN) trained on data collected from the visual media-sharing social platform Instagram account of a popular Indian lifestyle magazine to predict the popularity of future posts. This predicted popularity of the post can be used to decide advertising rates and measure performance metrics important for publishing strategy decisions. The DNN primarily uses growth rate in subscriber base, tags associated with the post, time of day when the post was made, day of the week, color descriptors of the image, time between current and previous post, popularity of previous post as features for prediction. This covers majority of the causes of variation in popularity. Mini-batch gradient descend method is used to learn the weights in DNN and the objective function is cross-entropy. The network performs acceptable for real world applications and tolerances are within acceptable limits for the application.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信