光势中活跃布朗粒子的模拟

G. Volpe, S. Gigan, G. Volpe
{"title":"光势中活跃布朗粒子的模拟","authors":"G. Volpe, S. Gigan, G. Volpe","doi":"10.1117/12.2061049","DOIUrl":null,"url":null,"abstract":"Optical forces can affect the motion of a Brownian particle. For example, optical tweezers use optical forces to trap a particle at a desirable position. Unlike passive Brownian particles, active Brownian particles, also known as microswimmers, propel themselves with directed motion and thus drive themselves out of equilibrium. Understanding their motion in a confined potential can provide insight into out-of-equilibrium phenomena associated with biological examples such as bacteria, as well as with artificial microswimmers. We discuss how to mathematically model their motion in an optical potential using a set of stochastic differential equations and how to numerically simulate it using the corresponding set of finite difference equations.","PeriodicalId":128143,"journal":{"name":"Optics & Photonics - NanoScience + Engineering","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulation of active Brownian particles in optical potentials\",\"authors\":\"G. Volpe, S. Gigan, G. Volpe\",\"doi\":\"10.1117/12.2061049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Optical forces can affect the motion of a Brownian particle. For example, optical tweezers use optical forces to trap a particle at a desirable position. Unlike passive Brownian particles, active Brownian particles, also known as microswimmers, propel themselves with directed motion and thus drive themselves out of equilibrium. Understanding their motion in a confined potential can provide insight into out-of-equilibrium phenomena associated with biological examples such as bacteria, as well as with artificial microswimmers. We discuss how to mathematically model their motion in an optical potential using a set of stochastic differential equations and how to numerically simulate it using the corresponding set of finite difference equations.\",\"PeriodicalId\":128143,\"journal\":{\"name\":\"Optics & Photonics - NanoScience + Engineering\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics & Photonics - NanoScience + Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2061049\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics & Photonics - NanoScience + Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2061049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

光力可以影响布朗粒子的运动。例如,光镊利用光力将粒子困在理想位置。与被动布朗粒子不同,主动布朗粒子,也被称为微游泳者,以定向运动推动自己,从而使自己脱离平衡。了解它们在受限势中的运动可以帮助我们深入了解与细菌等生物例子以及人工微游泳者相关的不平衡现象。我们讨论了如何用一组随机微分方程在数学上模拟它们在光势中的运动,以及如何用相应的一组有限差分方程对其进行数值模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simulation of active Brownian particles in optical potentials
Optical forces can affect the motion of a Brownian particle. For example, optical tweezers use optical forces to trap a particle at a desirable position. Unlike passive Brownian particles, active Brownian particles, also known as microswimmers, propel themselves with directed motion and thus drive themselves out of equilibrium. Understanding their motion in a confined potential can provide insight into out-of-equilibrium phenomena associated with biological examples such as bacteria, as well as with artificial microswimmers. We discuss how to mathematically model their motion in an optical potential using a set of stochastic differential equations and how to numerically simulate it using the corresponding set of finite difference equations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信