通用图形处理单元的随机推测计算方法

Yosuke Suzuki, Akira Hamada, Yasuki Iizuka
{"title":"通用图形处理单元的随机推测计算方法","authors":"Yosuke Suzuki, Akira Hamada, Yasuki Iizuka","doi":"10.1109/IIAI-AAI.2017.66","DOIUrl":null,"url":null,"abstract":"Parallel processing is considered effective in order to solve problems with significant computational complexity. The development of graphics processing units (GPU) in recent years has led to eneral purpose GPU (GPGPU) and brought significant benefits to the AI research field. In conventional parallel processing, processes must be frequently synchronized; thus, parallel computing does not necessarily improve the efficiency of computation except for special algorithms designed for parallel computation. In this study, we investigate the effect of applying MultiStart based speculative computation on GPGPU. This method incurs little synchronization overhead. Although the effect of this method is stochastic, an expected value is theoretically calculable. We analyze theoretically about the effects of the speculative method, and provide the results of applying the method to combinatorial optimization problems.","PeriodicalId":281712,"journal":{"name":"2017 6th IIAI International Congress on Advanced Applied Informatics (IIAI-AAI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Stochastic Speculative Computation Method on General Purpose Graphics Processing Units\",\"authors\":\"Yosuke Suzuki, Akira Hamada, Yasuki Iizuka\",\"doi\":\"10.1109/IIAI-AAI.2017.66\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Parallel processing is considered effective in order to solve problems with significant computational complexity. The development of graphics processing units (GPU) in recent years has led to eneral purpose GPU (GPGPU) and brought significant benefits to the AI research field. In conventional parallel processing, processes must be frequently synchronized; thus, parallel computing does not necessarily improve the efficiency of computation except for special algorithms designed for parallel computation. In this study, we investigate the effect of applying MultiStart based speculative computation on GPGPU. This method incurs little synchronization overhead. Although the effect of this method is stochastic, an expected value is theoretically calculable. We analyze theoretically about the effects of the speculative method, and provide the results of applying the method to combinatorial optimization problems.\",\"PeriodicalId\":281712,\"journal\":{\"name\":\"2017 6th IIAI International Congress on Advanced Applied Informatics (IIAI-AAI)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 6th IIAI International Congress on Advanced Applied Informatics (IIAI-AAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IIAI-AAI.2017.66\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 6th IIAI International Congress on Advanced Applied Informatics (IIAI-AAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IIAI-AAI.2017.66","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

并行处理被认为是解决计算复杂度很高的问题的有效方法。近年来图形处理单元(GPU)的发展导致了通用GPU (GPGPU)的出现,并为人工智能研究领域带来了显著的好处。在传统的并行处理中,进程必须经常同步;因此,除了为并行计算设计的特殊算法外,并行计算并不一定能提高计算效率。在本研究中,我们研究了基于MultiStart的推测计算在GPGPU上的应用效果。这种方法产生的同步开销很小。虽然该方法的效果是随机的,但其期望值在理论上是可计算的。从理论上分析了该方法的效果,并给出了该方法在组合优化问题中的应用结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stochastic Speculative Computation Method on General Purpose Graphics Processing Units
Parallel processing is considered effective in order to solve problems with significant computational complexity. The development of graphics processing units (GPU) in recent years has led to eneral purpose GPU (GPGPU) and brought significant benefits to the AI research field. In conventional parallel processing, processes must be frequently synchronized; thus, parallel computing does not necessarily improve the efficiency of computation except for special algorithms designed for parallel computation. In this study, we investigate the effect of applying MultiStart based speculative computation on GPGPU. This method incurs little synchronization overhead. Although the effect of this method is stochastic, an expected value is theoretically calculable. We analyze theoretically about the effects of the speculative method, and provide the results of applying the method to combinatorial optimization problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信