{"title":"钻石的德林菲尔德引理","authors":"P. Scholze, Jared Weinstein","doi":"10.2307/j.ctvs32rc9.19","DOIUrl":null,"url":null,"abstract":"This chapter addresses Drinfeld's lemma for diamonds. It proves a local analogue of Drinfeld's lemma, thereby giving a first nontrivial argument involving diamonds. This lecture is entirely about fundamental groups. A diamond is defined to be connected if it is not the disjoint union of two open subsheaves. For a connected diamond, finite étale covers form a Galois category. As such, for a geometric point, one can define a profinite group, such that finite sets are equivalent to finite étale covers. In this proof, the chapter uses the formalism of diamonds rather heavily to transport finite étale maps between different presentations of a diamond as the diamond of an analytic adic space.","PeriodicalId":270009,"journal":{"name":"Berkeley Lectures on p-adic Geometry","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Drinfeld’s lemma for diamonds\",\"authors\":\"P. Scholze, Jared Weinstein\",\"doi\":\"10.2307/j.ctvs32rc9.19\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This chapter addresses Drinfeld's lemma for diamonds. It proves a local analogue of Drinfeld's lemma, thereby giving a first nontrivial argument involving diamonds. This lecture is entirely about fundamental groups. A diamond is defined to be connected if it is not the disjoint union of two open subsheaves. For a connected diamond, finite étale covers form a Galois category. As such, for a geometric point, one can define a profinite group, such that finite sets are equivalent to finite étale covers. In this proof, the chapter uses the formalism of diamonds rather heavily to transport finite étale maps between different presentations of a diamond as the diamond of an analytic adic space.\",\"PeriodicalId\":270009,\"journal\":{\"name\":\"Berkeley Lectures on p-adic Geometry\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Berkeley Lectures on p-adic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2307/j.ctvs32rc9.19\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Berkeley Lectures on p-adic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2307/j.ctvs32rc9.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This chapter addresses Drinfeld's lemma for diamonds. It proves a local analogue of Drinfeld's lemma, thereby giving a first nontrivial argument involving diamonds. This lecture is entirely about fundamental groups. A diamond is defined to be connected if it is not the disjoint union of two open subsheaves. For a connected diamond, finite étale covers form a Galois category. As such, for a geometric point, one can define a profinite group, such that finite sets are equivalent to finite étale covers. In this proof, the chapter uses the formalism of diamonds rather heavily to transport finite étale maps between different presentations of a diamond as the diamond of an analytic adic space.