具有自适应交叉逼近加速度的不连续Galerkin曲面积分方程方法

Yun Lin, Liangshuai Guo
{"title":"具有自适应交叉逼近加速度的不连续Galerkin曲面积分方程方法","authors":"Yun Lin, Liangshuai Guo","doi":"10.1109/ICEICT.2016.7879740","DOIUrl":null,"url":null,"abstract":"A discontinuous Galerkin integral equation domain decomposition method based on adaptive cross approximation (ACA) is presented. The CN/LT basis function is used for correctly representing the continuity of the induced current on the boundaries. ACA is used for accelerating the solving of the linear system. Several numerical examples are given to demonstrate the correctness and the effectiveness of the proposed algorithm.","PeriodicalId":224387,"journal":{"name":"2016 IEEE International Conference on Electronic Information and Communication Technology (ICEICT)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A discontinuous Galerkin surface integral equation method with adaptive cross approximation acceleration\",\"authors\":\"Yun Lin, Liangshuai Guo\",\"doi\":\"10.1109/ICEICT.2016.7879740\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A discontinuous Galerkin integral equation domain decomposition method based on adaptive cross approximation (ACA) is presented. The CN/LT basis function is used for correctly representing the continuity of the induced current on the boundaries. ACA is used for accelerating the solving of the linear system. Several numerical examples are given to demonstrate the correctness and the effectiveness of the proposed algorithm.\",\"PeriodicalId\":224387,\"journal\":{\"name\":\"2016 IEEE International Conference on Electronic Information and Communication Technology (ICEICT)\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Electronic Information and Communication Technology (ICEICT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEICT.2016.7879740\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Electronic Information and Communication Technology (ICEICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEICT.2016.7879740","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种基于自适应交叉逼近(ACA)的间断伽辽金积分方程区域分解方法。CN/LT基函数用于正确表示感应电流在边界上的连续性。ACA用于加速线性系统的求解。算例验证了该算法的正确性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A discontinuous Galerkin surface integral equation method with adaptive cross approximation acceleration
A discontinuous Galerkin integral equation domain decomposition method based on adaptive cross approximation (ACA) is presented. The CN/LT basis function is used for correctly representing the continuity of the induced current on the boundaries. ACA is used for accelerating the solving of the linear system. Several numerical examples are given to demonstrate the correctness and the effectiveness of the proposed algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信