图代数的集划分表和表示

Tom Halverson, T. Jacobson
{"title":"图代数的集划分表和表示","authors":"Tom Halverson, T. Jacobson","doi":"10.5802/alco.102","DOIUrl":null,"url":null,"abstract":"The partition algebra is an associative algebra with a basis of set-partition diagrams and multiplication given by diagram concatenation. It contains as subalgebras a large class of diagram algebras including the Brauer, planar partition, rook monoid, rook-Brauer, Temperley-Lieb, Motzkin, planar rook monoid, and symmetric group algebras. We give a construction of the irreducible modules of these algebras in two isomorphic ways: first, as the span of symmetric diagrams on which the algebra acts by conjugation twisted with an irreducible symmetric group representation and, second, on a basis indexed by set-partition tableaux such that diagrams in the algebra act combinatorially on tableaux. The first representation is analogous to the Gelfand model and the second is a generalization of Young's natural representation of the symmetric group on standard tableaux. The methods of this paper work uniformly for the partition algebra and its diagram subalgebras. As an application, we express the characters of each of these algebras as nonnegative integer combinations of symmetric group characters whose coefficients count fixed points under conjugation.","PeriodicalId":275006,"journal":{"name":"arXiv: Representation Theory","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Set-partition tableaux and representations of diagram algebras\",\"authors\":\"Tom Halverson, T. Jacobson\",\"doi\":\"10.5802/alco.102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The partition algebra is an associative algebra with a basis of set-partition diagrams and multiplication given by diagram concatenation. It contains as subalgebras a large class of diagram algebras including the Brauer, planar partition, rook monoid, rook-Brauer, Temperley-Lieb, Motzkin, planar rook monoid, and symmetric group algebras. We give a construction of the irreducible modules of these algebras in two isomorphic ways: first, as the span of symmetric diagrams on which the algebra acts by conjugation twisted with an irreducible symmetric group representation and, second, on a basis indexed by set-partition tableaux such that diagrams in the algebra act combinatorially on tableaux. The first representation is analogous to the Gelfand model and the second is a generalization of Young's natural representation of the symmetric group on standard tableaux. The methods of this paper work uniformly for the partition algebra and its diagram subalgebras. As an application, we express the characters of each of these algebras as nonnegative integer combinations of symmetric group characters whose coefficients count fixed points under conjugation.\",\"PeriodicalId\":275006,\"journal\":{\"name\":\"arXiv: Representation Theory\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Representation Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5802/alco.102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Representation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/alco.102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

划分代数是一种结合代数,它的基础是集合划分图和由图连接给出的乘法。它包含了一大类图代数作为子代数,包括Brauer、平面划分、rok -Brauer、Temperley-Lieb、Motzkin、平面rok - monooid和对称群代数。我们以两种同构的方式给出了这些代数的不可约模的构造:第一,作为对称图的张成,代数在其上以不可约对称群表示的共轭扭曲作用;第二,在集合划分表索引的基础上,使得代数中的图在表上组合作用。第一种表示类似于Gelfand模型,第二种是杨在标准表上对称群的自然表示的推广。本文的方法对划分代数及其图子代数一致地起作用。作为应用,我们将每一个代数的特征表示为对称群特征的非负整数组合,这些对称群特征的系数是共轭不动点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Set-partition tableaux and representations of diagram algebras
The partition algebra is an associative algebra with a basis of set-partition diagrams and multiplication given by diagram concatenation. It contains as subalgebras a large class of diagram algebras including the Brauer, planar partition, rook monoid, rook-Brauer, Temperley-Lieb, Motzkin, planar rook monoid, and symmetric group algebras. We give a construction of the irreducible modules of these algebras in two isomorphic ways: first, as the span of symmetric diagrams on which the algebra acts by conjugation twisted with an irreducible symmetric group representation and, second, on a basis indexed by set-partition tableaux such that diagrams in the algebra act combinatorially on tableaux. The first representation is analogous to the Gelfand model and the second is a generalization of Young's natural representation of the symmetric group on standard tableaux. The methods of this paper work uniformly for the partition algebra and its diagram subalgebras. As an application, we express the characters of each of these algebras as nonnegative integer combinations of symmetric group characters whose coefficients count fixed points under conjugation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信