拉丁美洲石油出口目的地选择:一种机器学习方法

H. Jia, R. Adland, Yuchen Wang
{"title":"拉丁美洲石油出口目的地选择:一种机器学习方法","authors":"H. Jia, R. Adland, Yuchen Wang","doi":"10.1109/IEEM44572.2019.8978548","DOIUrl":null,"url":null,"abstract":"We implement machine learning techniques to predict the destination for Latin American crude oil exports. Utilizing a unique dataset of micro-level crude oil shipment data, derived from the Automatic Identification System (AIS) for ship tracking, we investigate the micro- and macro-level determinants of the destination choice. We use decision tree, Random Forests and boosted trees techniques in training a model to predict the export destinations which can help to identify seller/buyer groups with similar oil trade requirements. The results show that while macro data, such as regional oil price differences and crack spreads, impacts the crude oil flow, micro level information about the oil shipment are key attributes in the destination prediction. Our research has practical implications, particularly with regards to prediction of oil transportation demand, spatial price arbitrage and short-term forecasting of regional crack spreads.","PeriodicalId":255418,"journal":{"name":"2019 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Latin American Oil Export Destination Choice: A Machine Learning Approach\",\"authors\":\"H. Jia, R. Adland, Yuchen Wang\",\"doi\":\"10.1109/IEEM44572.2019.8978548\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We implement machine learning techniques to predict the destination for Latin American crude oil exports. Utilizing a unique dataset of micro-level crude oil shipment data, derived from the Automatic Identification System (AIS) for ship tracking, we investigate the micro- and macro-level determinants of the destination choice. We use decision tree, Random Forests and boosted trees techniques in training a model to predict the export destinations which can help to identify seller/buyer groups with similar oil trade requirements. The results show that while macro data, such as regional oil price differences and crack spreads, impacts the crude oil flow, micro level information about the oil shipment are key attributes in the destination prediction. Our research has practical implications, particularly with regards to prediction of oil transportation demand, spatial price arbitrage and short-term forecasting of regional crack spreads.\",\"PeriodicalId\":255418,\"journal\":{\"name\":\"2019 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEEM44572.2019.8978548\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEEM44572.2019.8978548","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们实现了机器学习技术来预测拉丁美洲原油出口的目的地。利用来自船舶跟踪自动识别系统(AIS)的独特微观原油运输数据集,我们研究了目的地选择的微观和宏观层面的决定因素。我们使用决策树、随机森林和提升树技术来训练模型来预测出口目的地,这可以帮助识别具有相似石油贸易需求的卖方/买方群体。结果表明,区域原油价格差异和裂缝价差等宏观数据影响原油流量,而原油运输的微观信息是目的地预测的关键属性。本文的研究在石油运输需求预测、空间价格套利和区域裂缝价差短期预测等方面具有实际意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Latin American Oil Export Destination Choice: A Machine Learning Approach
We implement machine learning techniques to predict the destination for Latin American crude oil exports. Utilizing a unique dataset of micro-level crude oil shipment data, derived from the Automatic Identification System (AIS) for ship tracking, we investigate the micro- and macro-level determinants of the destination choice. We use decision tree, Random Forests and boosted trees techniques in training a model to predict the export destinations which can help to identify seller/buyer groups with similar oil trade requirements. The results show that while macro data, such as regional oil price differences and crack spreads, impacts the crude oil flow, micro level information about the oil shipment are key attributes in the destination prediction. Our research has practical implications, particularly with regards to prediction of oil transportation demand, spatial price arbitrage and short-term forecasting of regional crack spreads.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信