Artem Revenko, Anna Breit, V. Mireles, J. Moreno-Schneider, C. Sageder, Sotirios Karampatakis
{"title":"在奥地利法院判决中用细粒度类型注释实体","authors":"Artem Revenko, Anna Breit, V. Mireles, J. Moreno-Schneider, C. Sageder, Sotirios Karampatakis","doi":"10.3233/ssw210041","DOIUrl":null,"url":null,"abstract":"The usage of Named Entity Recognition tools on domain-specific corpora is often hampered by insufficient training data. We investigate an approach to produce fine-grained named entity annotations of a large corpus of Austrian court decisions from a small manually annotated training data set. We apply a general purpose Named Entity Recognition model to produce annotations of common coarse-grained types. Next, a small sample of these annotations are manually inspected by domain experts to produce an initial fine-grained training data set. To efficiently use the small manually annotated data set we formulate the task of named entity typing as a binary classification task – for each originally annotated occurrence of an entity, and for each fine-grained type we verify if the entity belongs to it. For this purpose we train a transformer-based classifier. We randomly sample 547 predictions and evaluate them manually. The incorrect predictions are used to improve the performance of the classifier – the corrected annotations are added to the training set. The experiments show that re-training with even a very small number (5 or 10) of originally incorrect predictions can significantly improve the classifier performance. We finally train the classifier on all available data and re-annotate the whole data set.","PeriodicalId":275036,"journal":{"name":"International Conference on Semantic Systems","volume":"88 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Annotating Entities with Fine-Grained Types in Austrian Court Decisions\",\"authors\":\"Artem Revenko, Anna Breit, V. Mireles, J. Moreno-Schneider, C. Sageder, Sotirios Karampatakis\",\"doi\":\"10.3233/ssw210041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The usage of Named Entity Recognition tools on domain-specific corpora is often hampered by insufficient training data. We investigate an approach to produce fine-grained named entity annotations of a large corpus of Austrian court decisions from a small manually annotated training data set. We apply a general purpose Named Entity Recognition model to produce annotations of common coarse-grained types. Next, a small sample of these annotations are manually inspected by domain experts to produce an initial fine-grained training data set. To efficiently use the small manually annotated data set we formulate the task of named entity typing as a binary classification task – for each originally annotated occurrence of an entity, and for each fine-grained type we verify if the entity belongs to it. For this purpose we train a transformer-based classifier. We randomly sample 547 predictions and evaluate them manually. The incorrect predictions are used to improve the performance of the classifier – the corrected annotations are added to the training set. The experiments show that re-training with even a very small number (5 or 10) of originally incorrect predictions can significantly improve the classifier performance. We finally train the classifier on all available data and re-annotate the whole data set.\",\"PeriodicalId\":275036,\"journal\":{\"name\":\"International Conference on Semantic Systems\",\"volume\":\"88 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Semantic Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/ssw210041\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Semantic Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/ssw210041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Annotating Entities with Fine-Grained Types in Austrian Court Decisions
The usage of Named Entity Recognition tools on domain-specific corpora is often hampered by insufficient training data. We investigate an approach to produce fine-grained named entity annotations of a large corpus of Austrian court decisions from a small manually annotated training data set. We apply a general purpose Named Entity Recognition model to produce annotations of common coarse-grained types. Next, a small sample of these annotations are manually inspected by domain experts to produce an initial fine-grained training data set. To efficiently use the small manually annotated data set we formulate the task of named entity typing as a binary classification task – for each originally annotated occurrence of an entity, and for each fine-grained type we verify if the entity belongs to it. For this purpose we train a transformer-based classifier. We randomly sample 547 predictions and evaluate them manually. The incorrect predictions are used to improve the performance of the classifier – the corrected annotations are added to the training set. The experiments show that re-training with even a very small number (5 or 10) of originally incorrect predictions can significantly improve the classifier performance. We finally train the classifier on all available data and re-annotate the whole data set.