两球产物上的一些Kähler结构

J.-F. Lafont, Gangotryi Sorcar, F. Zheng
{"title":"两球产物上的一些Kähler结构","authors":"J.-F. Lafont, Gangotryi Sorcar, F. Zheng","doi":"10.4171/LEM/64-1/2-5","DOIUrl":null,"url":null,"abstract":"We consider a family of K\\\"ahler structures on products of 2-spheres, arising from complex Bott manifolds. These are obtained via iterated $\\mathbb P^1$-bundle constructions, generalizing the classical Hirzebruch surfaces. We show that the resulting K\\\"ahler structures all have identical Chern classes. We construct Bott diagrams, which are rooted forests with an edge labelling by positive integers, and show that these classify these K\\\"ahler structures up to biholomorphism.","PeriodicalId":344085,"journal":{"name":"L’Enseignement Mathématique","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Some Kähler structures on products of 2-spheres\",\"authors\":\"J.-F. Lafont, Gangotryi Sorcar, F. Zheng\",\"doi\":\"10.4171/LEM/64-1/2-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a family of K\\\\\\\"ahler structures on products of 2-spheres, arising from complex Bott manifolds. These are obtained via iterated $\\\\mathbb P^1$-bundle constructions, generalizing the classical Hirzebruch surfaces. We show that the resulting K\\\\\\\"ahler structures all have identical Chern classes. We construct Bott diagrams, which are rooted forests with an edge labelling by positive integers, and show that these classify these K\\\\\\\"ahler structures up to biholomorphism.\",\"PeriodicalId\":344085,\"journal\":{\"name\":\"L’Enseignement Mathématique\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"L’Enseignement Mathématique\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4171/LEM/64-1/2-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"L’Enseignement Mathématique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/LEM/64-1/2-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

研究了由复数Bott流形引起的2球积上的一类K\ ahler结构。这些是通过迭代$\mathbb P^1$-束构造得到的,推广了经典的Hirzebruch曲面。我们证明了得到的K\ ahler结构都具有相同的chen类。我们构造了以正整数为边缘标记的块状森林的博特图,并证明了这些图将这些K\ ahler结构分类到生物全纯。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Some Kähler structures on products of 2-spheres
We consider a family of K\"ahler structures on products of 2-spheres, arising from complex Bott manifolds. These are obtained via iterated $\mathbb P^1$-bundle constructions, generalizing the classical Hirzebruch surfaces. We show that the resulting K\"ahler structures all have identical Chern classes. We construct Bott diagrams, which are rooted forests with an edge labelling by positive integers, and show that these classify these K\"ahler structures up to biholomorphism.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信