用于流神经网络加速的轻量级可编程DSP块覆盖

Lenos Ioannou, Suhaib A. Fahmy
{"title":"用于流神经网络加速的轻量级可编程DSP块覆盖","authors":"Lenos Ioannou, Suhaib A. Fahmy","doi":"10.1109/ICFPT47387.2019.00066","DOIUrl":null,"url":null,"abstract":"Implementations of hardware accelerators for neural networks are increasingly popular on FPGAs, due to flexibility, achievable performance and efficiency gains resulting from network optimisations. The long compilation time required by the backend toolflow, however, makes rapid deployment and prototyping of such accelerators on FPGAs more difficult. Moreover, achieving high frequency of operation requires significant low-level design effort. We present a neural network overlay for FPGAs that exploits DSP blocks, operating at near their theoretical maximum frequency, while minimizing resource utilization. The proposed architecture is flexible, enabling rapid runtime configuration of network parameters according to the desired network topology. It is tailored for lightweight edge implementations requiring acceleration, rather than the highest throughput achieved by more complex architectures in the datacenter.","PeriodicalId":241340,"journal":{"name":"2019 International Conference on Field-Programmable Technology (ICFPT)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Lightweight Programmable DSP Block Overlay for Streaming Neural Network Acceleration\",\"authors\":\"Lenos Ioannou, Suhaib A. Fahmy\",\"doi\":\"10.1109/ICFPT47387.2019.00066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Implementations of hardware accelerators for neural networks are increasingly popular on FPGAs, due to flexibility, achievable performance and efficiency gains resulting from network optimisations. The long compilation time required by the backend toolflow, however, makes rapid deployment and prototyping of such accelerators on FPGAs more difficult. Moreover, achieving high frequency of operation requires significant low-level design effort. We present a neural network overlay for FPGAs that exploits DSP blocks, operating at near their theoretical maximum frequency, while minimizing resource utilization. The proposed architecture is flexible, enabling rapid runtime configuration of network parameters according to the desired network topology. It is tailored for lightweight edge implementations requiring acceleration, rather than the highest throughput achieved by more complex architectures in the datacenter.\",\"PeriodicalId\":241340,\"journal\":{\"name\":\"2019 International Conference on Field-Programmable Technology (ICFPT)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Field-Programmable Technology (ICFPT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICFPT47387.2019.00066\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Field-Programmable Technology (ICFPT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICFPT47387.2019.00066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

由于网络优化带来的灵活性、可实现的性能和效率提升,神经网络硬件加速器的实现在fpga上越来越受欢迎。然而,后端工具流所需的长编译时间使得在fpga上快速部署和原型化这种加速器变得更加困难。此外,实现高频率的操作需要大量的底层设计工作。我们提出了一种利用DSP块的fpga神经网络覆盖,在接近其理论最大频率的情况下工作,同时最大限度地减少资源利用率。所提出的体系结构是灵活的,可以根据所需的网络拓扑快速配置网络参数。它是为需要加速的轻量级边缘实现量身定制的,而不是由数据中心中更复杂的体系结构实现的最高吞吐量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lightweight Programmable DSP Block Overlay for Streaming Neural Network Acceleration
Implementations of hardware accelerators for neural networks are increasingly popular on FPGAs, due to flexibility, achievable performance and efficiency gains resulting from network optimisations. The long compilation time required by the backend toolflow, however, makes rapid deployment and prototyping of such accelerators on FPGAs more difficult. Moreover, achieving high frequency of operation requires significant low-level design effort. We present a neural network overlay for FPGAs that exploits DSP blocks, operating at near their theoretical maximum frequency, while minimizing resource utilization. The proposed architecture is flexible, enabling rapid runtime configuration of network parameters according to the desired network topology. It is tailored for lightweight edge implementations requiring acceleration, rather than the highest throughput achieved by more complex architectures in the datacenter.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信