利用超立方多处理机求非对称矩阵的特征值和特征向量

A. Geist, R. Ward, G. J. Davis, R. Funderlic
{"title":"利用超立方多处理机求非对称矩阵的特征值和特征向量","authors":"A. Geist, R. Ward, G. J. Davis, R. Funderlic","doi":"10.1145/63047.63118","DOIUrl":null,"url":null,"abstract":"Distributed-memory algorithms for finding the eigenvalues and eigenvectors of a dense unsymmetric matrix are given. While several parallel algorithms have been developed for symmetric systems, little work has been done on the unsymmetric case. Our parallel implementation proceeds in three major steps: reduction of the original matrix to Hessenberg form, application of the implicit double-shift QR algorithm to compute the eigenvalues, and back transformations to compute the eigenvectors. Several modifications to our parallel QR algorithm, including ring communication and pipelining, are discussed and compared. Results and timings are given.","PeriodicalId":299435,"journal":{"name":"Conference on Hypercube Concurrent Computers and Applications","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1989-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Finding eigenvalues and eigenvectors of unsymmetric matrices using a hypercube multiprocessor\",\"authors\":\"A. Geist, R. Ward, G. J. Davis, R. Funderlic\",\"doi\":\"10.1145/63047.63118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Distributed-memory algorithms for finding the eigenvalues and eigenvectors of a dense unsymmetric matrix are given. While several parallel algorithms have been developed for symmetric systems, little work has been done on the unsymmetric case. Our parallel implementation proceeds in three major steps: reduction of the original matrix to Hessenberg form, application of the implicit double-shift QR algorithm to compute the eigenvalues, and back transformations to compute the eigenvectors. Several modifications to our parallel QR algorithm, including ring communication and pipelining, are discussed and compared. Results and timings are given.\",\"PeriodicalId\":299435,\"journal\":{\"name\":\"Conference on Hypercube Concurrent Computers and Applications\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1989-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference on Hypercube Concurrent Computers and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/63047.63118\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference on Hypercube Concurrent Computers and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/63047.63118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

给出了求密集非对称矩阵特征值和特征向量的分布式记忆算法。虽然针对对称系统已经开发了几种并行算法,但针对非对称情况的并行算法却很少。我们的并行实现分为三个主要步骤:将原始矩阵简化为Hessenberg形式,应用隐式双移QR算法来计算特征值,以及反向变换来计算特征向量。讨论并比较了对并行QR算法的改进,包括环通信和流水线。给出了实验结果和时间安排。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Finding eigenvalues and eigenvectors of unsymmetric matrices using a hypercube multiprocessor
Distributed-memory algorithms for finding the eigenvalues and eigenvectors of a dense unsymmetric matrix are given. While several parallel algorithms have been developed for symmetric systems, little work has been done on the unsymmetric case. Our parallel implementation proceeds in three major steps: reduction of the original matrix to Hessenberg form, application of the implicit double-shift QR algorithm to compute the eigenvalues, and back transformations to compute the eigenvectors. Several modifications to our parallel QR algorithm, including ring communication and pipelining, are discussed and compared. Results and timings are given.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信