{"title":"通过最小化估计方差来修剪神经网络","authors":"P. Morgan, B. Curry, M. Beynon","doi":"10.1051/EJESS:2000104","DOIUrl":null,"url":null,"abstract":"This paper presents a series of results on a method of pruning neural networks. An approximation to the estimated variance of errors, V, is constructed containing a supplementary parameter, a - the estimated variance itself being the limit of the function, V, as a tends to zero. The network weights are fitted using a minimization algorithm with V as objective function. The parameter, a, is reduced successively in the course of fitting. Results are presented using synthetic functions and the well-known airline passenger data. We find, for example, that the network can discover, in the course of being pruned, evidence of redundancy in the variables.","PeriodicalId":352454,"journal":{"name":"European Journal of Economic and Social Systems","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Pruning neural networks by minimization of the estimated variance\",\"authors\":\"P. Morgan, B. Curry, M. Beynon\",\"doi\":\"10.1051/EJESS:2000104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a series of results on a method of pruning neural networks. An approximation to the estimated variance of errors, V, is constructed containing a supplementary parameter, a - the estimated variance itself being the limit of the function, V, as a tends to zero. The network weights are fitted using a minimization algorithm with V as objective function. The parameter, a, is reduced successively in the course of fitting. Results are presented using synthetic functions and the well-known airline passenger data. We find, for example, that the network can discover, in the course of being pruned, evidence of redundancy in the variables.\",\"PeriodicalId\":352454,\"journal\":{\"name\":\"European Journal of Economic and Social Systems\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Economic and Social Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/EJESS:2000104\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Economic and Social Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/EJESS:2000104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Pruning neural networks by minimization of the estimated variance
This paper presents a series of results on a method of pruning neural networks. An approximation to the estimated variance of errors, V, is constructed containing a supplementary parameter, a - the estimated variance itself being the limit of the function, V, as a tends to zero. The network weights are fitted using a minimization algorithm with V as objective function. The parameter, a, is reduced successively in the course of fitting. Results are presented using synthetic functions and the well-known airline passenger data. We find, for example, that the network can discover, in the course of being pruned, evidence of redundancy in the variables.