基于krylov子空间回收技术的稀疏编码ADMM惩罚参数选择

Youzuo Lin, B. Wohlberg, V. Vesselinov
{"title":"基于krylov子空间回收技术的稀疏编码ADMM惩罚参数选择","authors":"Youzuo Lin, B. Wohlberg, V. Vesselinov","doi":"10.1109/ICIP.2017.8296621","DOIUrl":null,"url":null,"abstract":"Sparse representations are widely used in a broad variety of fields. A number of different methods have been proposed to solve the sparse coding problem, of which the alternating direction method of multipliers (ADMM) is one of the most popular. One of the disadvantages of this method, however, is the need to select an algorithm parameter, the penalty parameter, that has a significant effect on the rate of convergence of the algorithm. Although a number of heuristic methods have been proposed, as yet there is no general theory providing a good choice of this parameter for all problems. One obvious approach would be to try a number of different parameters at each iteration, proceeding further with the one that delivers the best reduction in functional value, but this would involve a substantial increase in computational cost. We show that, when solving the sparse coding problem for a dictionary corresponding to an operator with a fast transform, requiring iterative methods to solve the main linear system arising in the ADMM solution, it is possible to explore a large range of parameters at marginal additional cost, thus greatly improving the robustness of the method to the choice of penalty parameter.","PeriodicalId":229602,"journal":{"name":"2017 IEEE International Conference on Image Processing (ICIP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"ADMM penalty parameter selection with krylov subspace recycling technique for sparse coding\",\"authors\":\"Youzuo Lin, B. Wohlberg, V. Vesselinov\",\"doi\":\"10.1109/ICIP.2017.8296621\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sparse representations are widely used in a broad variety of fields. A number of different methods have been proposed to solve the sparse coding problem, of which the alternating direction method of multipliers (ADMM) is one of the most popular. One of the disadvantages of this method, however, is the need to select an algorithm parameter, the penalty parameter, that has a significant effect on the rate of convergence of the algorithm. Although a number of heuristic methods have been proposed, as yet there is no general theory providing a good choice of this parameter for all problems. One obvious approach would be to try a number of different parameters at each iteration, proceeding further with the one that delivers the best reduction in functional value, but this would involve a substantial increase in computational cost. We show that, when solving the sparse coding problem for a dictionary corresponding to an operator with a fast transform, requiring iterative methods to solve the main linear system arising in the ADMM solution, it is possible to explore a large range of parameters at marginal additional cost, thus greatly improving the robustness of the method to the choice of penalty parameter.\",\"PeriodicalId\":229602,\"journal\":{\"name\":\"2017 IEEE International Conference on Image Processing (ICIP)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Image Processing (ICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.2017.8296621\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2017.8296621","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

稀疏表示在很多领域都有广泛的应用。人们提出了许多不同的方法来解决稀疏编码问题,其中乘法器的交替方向法(ADMM)是最受欢迎的方法之一。然而,这种方法的缺点之一是需要选择一个算法参数,即惩罚参数,这对算法的收敛速度有很大的影响。虽然已经提出了许多启发式方法,但迄今为止还没有一个通用的理论为所有问题提供这个参数的良好选择。一种明显的方法是在每次迭代中尝试许多不同的参数,进一步选择能够最大限度地减少功能值的参数,但这将导致计算成本的大幅增加。研究表明,在求解具有快速变换的算子对应的字典的稀疏编码问题时,需要迭代方法来求解ADMM解中出现的主要线性系统,可以在边际附加成本下探索大范围的参数,从而大大提高了方法对惩罚参数选择的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ADMM penalty parameter selection with krylov subspace recycling technique for sparse coding
Sparse representations are widely used in a broad variety of fields. A number of different methods have been proposed to solve the sparse coding problem, of which the alternating direction method of multipliers (ADMM) is one of the most popular. One of the disadvantages of this method, however, is the need to select an algorithm parameter, the penalty parameter, that has a significant effect on the rate of convergence of the algorithm. Although a number of heuristic methods have been proposed, as yet there is no general theory providing a good choice of this parameter for all problems. One obvious approach would be to try a number of different parameters at each iteration, proceeding further with the one that delivers the best reduction in functional value, but this would involve a substantial increase in computational cost. We show that, when solving the sparse coding problem for a dictionary corresponding to an operator with a fast transform, requiring iterative methods to solve the main linear system arising in the ADMM solution, it is possible to explore a large range of parameters at marginal additional cost, thus greatly improving the robustness of the method to the choice of penalty parameter.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信