{"title":"筛:用于大型MU-MIMO系统的可扩展用户分组","authors":"Wei-Liang Shen, K. Lin, Ming-Syan Chen, Kun Tan","doi":"10.1109/INFOCOM.2015.7218581","DOIUrl":null,"url":null,"abstract":"Multi-user multiple input and multiple output (MU-MIMO) is one predominate approach to improve the wireless capacity. However, since the aggregate capacity of MU-MIMO heavily depends on the channel correlations among the mobile users in a beamforming group, unwisely selecting beamforming groups may result in reduced overall capacity, instead of increasing it. How to select users into a beamforming group becomes the bottleneck of realizing the MU-MIMO gain. The fundamental challenge for user selection is the large searching space, and hence there exists a tradeoff between search complexity and achievable capacity. Previous works have proposed several low complexity heuristic algorithms, but they suffer a significant capacity loss. In this paper, we present a novel MU-MIMO MAC, called SIEVE. The core of SIEVE design is its scalable multi-user selection module that provides a knob to control the aggressiveness in searching the best beamforming group. SIEVE maintains a central database to track the channel and the coherence time for each mobile user, and largely avoids unnecessary computing with a progressive update strategy. Our evaluation, via both small-scale testbed experiments and large-scale trace-driven simulations, shows that SIEVE can achieve around 90% of the capacity compared to exhaustive search.","PeriodicalId":342583,"journal":{"name":"2015 IEEE Conference on Computer Communications (INFOCOM)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"46","resultStr":"{\"title\":\"SIEVE: Scalable user grouping for large MU-MIMO systems\",\"authors\":\"Wei-Liang Shen, K. Lin, Ming-Syan Chen, Kun Tan\",\"doi\":\"10.1109/INFOCOM.2015.7218581\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-user multiple input and multiple output (MU-MIMO) is one predominate approach to improve the wireless capacity. However, since the aggregate capacity of MU-MIMO heavily depends on the channel correlations among the mobile users in a beamforming group, unwisely selecting beamforming groups may result in reduced overall capacity, instead of increasing it. How to select users into a beamforming group becomes the bottleneck of realizing the MU-MIMO gain. The fundamental challenge for user selection is the large searching space, and hence there exists a tradeoff between search complexity and achievable capacity. Previous works have proposed several low complexity heuristic algorithms, but they suffer a significant capacity loss. In this paper, we present a novel MU-MIMO MAC, called SIEVE. The core of SIEVE design is its scalable multi-user selection module that provides a knob to control the aggressiveness in searching the best beamforming group. SIEVE maintains a central database to track the channel and the coherence time for each mobile user, and largely avoids unnecessary computing with a progressive update strategy. Our evaluation, via both small-scale testbed experiments and large-scale trace-driven simulations, shows that SIEVE can achieve around 90% of the capacity compared to exhaustive search.\",\"PeriodicalId\":342583,\"journal\":{\"name\":\"2015 IEEE Conference on Computer Communications (INFOCOM)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"46\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE Conference on Computer Communications (INFOCOM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INFOCOM.2015.7218581\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Conference on Computer Communications (INFOCOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFOCOM.2015.7218581","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
SIEVE: Scalable user grouping for large MU-MIMO systems
Multi-user multiple input and multiple output (MU-MIMO) is one predominate approach to improve the wireless capacity. However, since the aggregate capacity of MU-MIMO heavily depends on the channel correlations among the mobile users in a beamforming group, unwisely selecting beamforming groups may result in reduced overall capacity, instead of increasing it. How to select users into a beamforming group becomes the bottleneck of realizing the MU-MIMO gain. The fundamental challenge for user selection is the large searching space, and hence there exists a tradeoff between search complexity and achievable capacity. Previous works have proposed several low complexity heuristic algorithms, but they suffer a significant capacity loss. In this paper, we present a novel MU-MIMO MAC, called SIEVE. The core of SIEVE design is its scalable multi-user selection module that provides a knob to control the aggressiveness in searching the best beamforming group. SIEVE maintains a central database to track the channel and the coherence time for each mobile user, and largely avoids unnecessary computing with a progressive update strategy. Our evaluation, via both small-scale testbed experiments and large-scale trace-driven simulations, shows that SIEVE can achieve around 90% of the capacity compared to exhaustive search.