查找图中频繁的子路径

S. Guha, Klong Luang
{"title":"查找图中频繁的子路径","authors":"S. Guha, Klong Luang","doi":"10.5121/IJDKP.2014.4503","DOIUrl":null,"url":null,"abstract":"The problem considered is that of finding frequent subpaths of a database of paths in a fixed undirected graph. This problem arises in applications such as predicting congestion in network and vehicular traffic. An algorithm, called AFS, based on the classic frequent itemset mining algorithm Apriori is developed, but with significantly improved efficiency over Apriori from exponential in transaction size to quadratic through exploiting the underlying graph structure. This efficiency makes AFS feasible for practical input path sizes. It is also proved that a natural generalization of the frequent subpaths problem is not amenable to any solution quicker than Apriori.","PeriodicalId":131153,"journal":{"name":"International Journal of Data Mining & Knowledge Management Process","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"FINDING FREQUENT SUBPATHS IN A G RAPH\",\"authors\":\"S. Guha, Klong Luang\",\"doi\":\"10.5121/IJDKP.2014.4503\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The problem considered is that of finding frequent subpaths of a database of paths in a fixed undirected graph. This problem arises in applications such as predicting congestion in network and vehicular traffic. An algorithm, called AFS, based on the classic frequent itemset mining algorithm Apriori is developed, but with significantly improved efficiency over Apriori from exponential in transaction size to quadratic through exploiting the underlying graph structure. This efficiency makes AFS feasible for practical input path sizes. It is also proved that a natural generalization of the frequent subpaths problem is not amenable to any solution quicker than Apriori.\",\"PeriodicalId\":131153,\"journal\":{\"name\":\"International Journal of Data Mining & Knowledge Management Process\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Data Mining & Knowledge Management Process\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5121/IJDKP.2014.4503\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Data Mining & Knowledge Management Process","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/IJDKP.2014.4503","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

所考虑的问题是在一个固定无向图的路径数据库中寻找频繁的子路径。这个问题出现在诸如预测网络和车辆交通的拥塞等应用中。本文在经典频繁项集挖掘算法Apriori的基础上开发了一种算法,称为AFS,但通过利用底层图结构,将事务大小的效率从Apriori的指数型提高到二次型,显著提高了Apriori的效率。这种效率使得AFS对于实际的输入路径尺寸是可行的。并证明了频繁子路径问题的自然泛化不可能有比Apriori更快的解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
FINDING FREQUENT SUBPATHS IN A G RAPH
The problem considered is that of finding frequent subpaths of a database of paths in a fixed undirected graph. This problem arises in applications such as predicting congestion in network and vehicular traffic. An algorithm, called AFS, based on the classic frequent itemset mining algorithm Apriori is developed, but with significantly improved efficiency over Apriori from exponential in transaction size to quadratic through exploiting the underlying graph structure. This efficiency makes AFS feasible for practical input path sizes. It is also proved that a natural generalization of the frequent subpaths problem is not amenable to any solution quicker than Apriori.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信