广义相关二维风险模型有限时间破产概率的渐近估计

Xinru Ji, Bingjie Wang, Jigao Yan, Dongya Cheng
{"title":"广义相关二维风险模型有限时间破产概率的渐近估计","authors":"Xinru Ji, Bingjie Wang, Jigao Yan, Dongya Cheng","doi":"10.3934/jimo.2022036","DOIUrl":null,"url":null,"abstract":"This paper studies ruin probabilities of a generalized bidimensional risk model with dependent and heavy-tailed claims and additional net loss processes. When the claim sizes have long-tailed and dominated-varying-tailed distributions, precise asymptotic formulae for two kinds of finite-time ruin probabilities are derived, where the two claim-number processes from different lines of business are almost arbitrarily dependent. Under some extra conditions on the independence relation of claim inter-arrival times, the class of the claim-size distributions is extended to the subexponential distribution class. In order to verify the accuracy of the obtained theoretical result, a simulation study is performed via the crude Monte Carlo method.","PeriodicalId":347719,"journal":{"name":"Journal of Industrial & Management Optimization","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotic estimates for finite-time ruin probabilities in a generalized dependent bidimensional risk model with CMC simulations\",\"authors\":\"Xinru Ji, Bingjie Wang, Jigao Yan, Dongya Cheng\",\"doi\":\"10.3934/jimo.2022036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies ruin probabilities of a generalized bidimensional risk model with dependent and heavy-tailed claims and additional net loss processes. When the claim sizes have long-tailed and dominated-varying-tailed distributions, precise asymptotic formulae for two kinds of finite-time ruin probabilities are derived, where the two claim-number processes from different lines of business are almost arbitrarily dependent. Under some extra conditions on the independence relation of claim inter-arrival times, the class of the claim-size distributions is extended to the subexponential distribution class. In order to verify the accuracy of the obtained theoretical result, a simulation study is performed via the crude Monte Carlo method.\",\"PeriodicalId\":347719,\"journal\":{\"name\":\"Journal of Industrial & Management Optimization\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Industrial & Management Optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/jimo.2022036\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial & Management Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/jimo.2022036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一类具有依赖重尾索赔和附加净损失过程的广义二维风险模型的破产概率。当索赔规模具有长尾和显性变尾分布时,导出了两种有限时间破产概率的精确渐近公式,其中来自不同业务线的两种索赔数量过程几乎是任意依赖的。在索赔间隔到达时间独立关系的一些附加条件下,将索赔规模分布类推广到次指数分布类。为了验证所得理论结果的准确性,采用原始蒙特卡罗方法进行了仿真研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asymptotic estimates for finite-time ruin probabilities in a generalized dependent bidimensional risk model with CMC simulations
This paper studies ruin probabilities of a generalized bidimensional risk model with dependent and heavy-tailed claims and additional net loss processes. When the claim sizes have long-tailed and dominated-varying-tailed distributions, precise asymptotic formulae for two kinds of finite-time ruin probabilities are derived, where the two claim-number processes from different lines of business are almost arbitrarily dependent. Under some extra conditions on the independence relation of claim inter-arrival times, the class of the claim-size distributions is extended to the subexponential distribution class. In order to verify the accuracy of the obtained theoretical result, a simulation study is performed via the crude Monte Carlo method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信