{"title":"在粒子滤波中的似然调整建议:局部重要抽样","authors":"P. Torma, Csaba Szepesvari","doi":"10.1109/ISPA.2005.195384","DOIUrl":null,"url":null,"abstract":"An unsatisfactory property of particle filters is that they may become inefficient when the observation noise is low. In this paper we consider a simple-to-implement particle filter, called 'LIS-based particle filter', whose aim is to overcome the above mentioned weakness. LIS-based particle filters sample the particles in a two-stage process that uses information of the most recent observation, too. Experiments with the standard bearings-only tracking problem indicate that the proposed new particle filter method is indeed a viable alternative to other methods.","PeriodicalId":238993,"journal":{"name":"ISPA 2005. Proceedings of the 4th International Symposium on Image and Signal Processing and Analysis, 2005.","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"On using likelihood-adjusted proposals in particle filtering: local importance sampling\",\"authors\":\"P. Torma, Csaba Szepesvari\",\"doi\":\"10.1109/ISPA.2005.195384\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An unsatisfactory property of particle filters is that they may become inefficient when the observation noise is low. In this paper we consider a simple-to-implement particle filter, called 'LIS-based particle filter', whose aim is to overcome the above mentioned weakness. LIS-based particle filters sample the particles in a two-stage process that uses information of the most recent observation, too. Experiments with the standard bearings-only tracking problem indicate that the proposed new particle filter method is indeed a viable alternative to other methods.\",\"PeriodicalId\":238993,\"journal\":{\"name\":\"ISPA 2005. Proceedings of the 4th International Symposium on Image and Signal Processing and Analysis, 2005.\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISPA 2005. Proceedings of the 4th International Symposium on Image and Signal Processing and Analysis, 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISPA.2005.195384\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISPA 2005. Proceedings of the 4th International Symposium on Image and Signal Processing and Analysis, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPA.2005.195384","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On using likelihood-adjusted proposals in particle filtering: local importance sampling
An unsatisfactory property of particle filters is that they may become inefficient when the observation noise is low. In this paper we consider a simple-to-implement particle filter, called 'LIS-based particle filter', whose aim is to overcome the above mentioned weakness. LIS-based particle filters sample the particles in a two-stage process that uses information of the most recent observation, too. Experiments with the standard bearings-only tracking problem indicate that the proposed new particle filter method is indeed a viable alternative to other methods.