{"title":"安全关乎控制:来自控制论的见解","authors":"Antonio Roque, K. Bush, Christopher Degni","doi":"10.1145/2898375.2898379","DOIUrl":null,"url":null,"abstract":"Cybernetic closed loop regulators are used to model socio-technical systems in adversarial contexts. Cybernetic principles regarding these idealized control loops are applied to show how the incompleteness of system models enables system exploitation. We consider abstractions as a case study of model incompleteness, and we characterize the ways that attackers and defenders interact in such a formalism. We end by arguing that the science of security is most like a military science, whose foundations are analytical and generative rather than normative.","PeriodicalId":163427,"journal":{"name":"Proceedings of the Symposium and Bootcamp on the Science of Security","volume":"97 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Security is about control: insights from cybernetics\",\"authors\":\"Antonio Roque, K. Bush, Christopher Degni\",\"doi\":\"10.1145/2898375.2898379\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cybernetic closed loop regulators are used to model socio-technical systems in adversarial contexts. Cybernetic principles regarding these idealized control loops are applied to show how the incompleteness of system models enables system exploitation. We consider abstractions as a case study of model incompleteness, and we characterize the ways that attackers and defenders interact in such a formalism. We end by arguing that the science of security is most like a military science, whose foundations are analytical and generative rather than normative.\",\"PeriodicalId\":163427,\"journal\":{\"name\":\"Proceedings of the Symposium and Bootcamp on the Science of Security\",\"volume\":\"97 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Symposium and Bootcamp on the Science of Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2898375.2898379\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Symposium and Bootcamp on the Science of Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2898375.2898379","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Security is about control: insights from cybernetics
Cybernetic closed loop regulators are used to model socio-technical systems in adversarial contexts. Cybernetic principles regarding these idealized control loops are applied to show how the incompleteness of system models enables system exploitation. We consider abstractions as a case study of model incompleteness, and we characterize the ways that attackers and defenders interact in such a formalism. We end by arguing that the science of security is most like a military science, whose foundations are analytical and generative rather than normative.