{"title":"生物特征完整性介绍:匹配和质量的等价性","authors":"P. Phillips, J. Beveridge","doi":"10.1109/BTAS.2009.5339055","DOIUrl":null,"url":null,"abstract":"This paper introduces the concept of biometric-completeness. A problem is biometric-complete if solving the problem is “equivalent” to solving a biometric recognition problem. The concept of biometric-completeness is modeled on the informal concept of artificial intelligence (AI) completeness. The concept of biometric-completeness is illustrated by showing a formal equivalence between biometric recognition and quality assessment of biometric samples. The model allows for the inclusion of quality of biometric samples in verification decisions. The model includes most methods for incorporating quality into biometric systems. The key result in this paper shows that finding the perfect quality measure for any algorithm is equivalent to finding the perfect verification algorithm. Two results that follow from the main result are: finding the perfect quality measure is equivalent to solving the open-set and closed-set identification problems; and that a universal perfect quality measure cannot exist.","PeriodicalId":325900,"journal":{"name":"2009 IEEE 3rd International Conference on Biometrics: Theory, Applications, and Systems","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"An introduction to biometric-completeness: The equivalence of matching and quality\",\"authors\":\"P. Phillips, J. Beveridge\",\"doi\":\"10.1109/BTAS.2009.5339055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces the concept of biometric-completeness. A problem is biometric-complete if solving the problem is “equivalent” to solving a biometric recognition problem. The concept of biometric-completeness is modeled on the informal concept of artificial intelligence (AI) completeness. The concept of biometric-completeness is illustrated by showing a formal equivalence between biometric recognition and quality assessment of biometric samples. The model allows for the inclusion of quality of biometric samples in verification decisions. The model includes most methods for incorporating quality into biometric systems. The key result in this paper shows that finding the perfect quality measure for any algorithm is equivalent to finding the perfect verification algorithm. Two results that follow from the main result are: finding the perfect quality measure is equivalent to solving the open-set and closed-set identification problems; and that a universal perfect quality measure cannot exist.\",\"PeriodicalId\":325900,\"journal\":{\"name\":\"2009 IEEE 3rd International Conference on Biometrics: Theory, Applications, and Systems\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE 3rd International Conference on Biometrics: Theory, Applications, and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BTAS.2009.5339055\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE 3rd International Conference on Biometrics: Theory, Applications, and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BTAS.2009.5339055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An introduction to biometric-completeness: The equivalence of matching and quality
This paper introduces the concept of biometric-completeness. A problem is biometric-complete if solving the problem is “equivalent” to solving a biometric recognition problem. The concept of biometric-completeness is modeled on the informal concept of artificial intelligence (AI) completeness. The concept of biometric-completeness is illustrated by showing a formal equivalence between biometric recognition and quality assessment of biometric samples. The model allows for the inclusion of quality of biometric samples in verification decisions. The model includes most methods for incorporating quality into biometric systems. The key result in this paper shows that finding the perfect quality measure for any algorithm is equivalent to finding the perfect verification algorithm. Two results that follow from the main result are: finding the perfect quality measure is equivalent to solving the open-set and closed-set identification problems; and that a universal perfect quality measure cannot exist.