{"title":"相干束k理论中的相对目标和边界映射","authors":"O. Braunling, M. Groechenig, J. Wolfson","doi":"10.4310/HHA.2017.V19.N1.A17","DOIUrl":null,"url":null,"abstract":"We investigate the properties of relative analogues of admissible Ind, Pro, and elementary Tate objects for pairs of exact categories, and give criteria for those categories to be abelian. A relative index map is introduced, and as an application we deduce a description for boundary morphisms in the K-theory of coherent sheaves on Noetherian schemes.","PeriodicalId":309711,"journal":{"name":"arXiv: K-Theory and Homology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Relative Tate Objects and Boundary Maps in the K-Theory of Coherent Sheaves\",\"authors\":\"O. Braunling, M. Groechenig, J. Wolfson\",\"doi\":\"10.4310/HHA.2017.V19.N1.A17\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the properties of relative analogues of admissible Ind, Pro, and elementary Tate objects for pairs of exact categories, and give criteria for those categories to be abelian. A relative index map is introduced, and as an application we deduce a description for boundary morphisms in the K-theory of coherent sheaves on Noetherian schemes.\",\"PeriodicalId\":309711,\"journal\":{\"name\":\"arXiv: K-Theory and Homology\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: K-Theory and Homology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4310/HHA.2017.V19.N1.A17\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/HHA.2017.V19.N1.A17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Relative Tate Objects and Boundary Maps in the K-Theory of Coherent Sheaves
We investigate the properties of relative analogues of admissible Ind, Pro, and elementary Tate objects for pairs of exact categories, and give criteria for those categories to be abelian. A relative index map is introduced, and as an application we deduce a description for boundary morphisms in the K-theory of coherent sheaves on Noetherian schemes.