具有高阶空间精度的互连热模拟

Yijiang Shen, N. Wong, E. Lam
{"title":"具有高阶空间精度的互连热模拟","authors":"Yijiang Shen, N. Wong, E. Lam","doi":"10.1109/APCCAS.2008.4746086","DOIUrl":null,"url":null,"abstract":"This paper reports on a numerical analysis of interconnect thermal profile with fourth-order accuracy in space. The interconnect thermal simulation is described in a partial differential equation (PDE), and solved by finite difference time domain (FDTD) techniques using a fourth-order approximation of the spatial partial derivative in the PDE. A recently developed numerically stable algorithm for inversion of block tridiagonal and banded matrices is applied when the thermal simulation is conducted using Crank-Nicolson method with fourth-order spatial accuracy. We have promising simulation results, showing that the proposed method can have more accurate temperature profile before reaching the steady state than the traditional menthols and the runtime is linearly proportional to the number of nodes.","PeriodicalId":344917,"journal":{"name":"APCCAS 2008 - 2008 IEEE Asia Pacific Conference on Circuits and Systems","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Interconnect thermal simulation with higher order spatial accuracy\",\"authors\":\"Yijiang Shen, N. Wong, E. Lam\",\"doi\":\"10.1109/APCCAS.2008.4746086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper reports on a numerical analysis of interconnect thermal profile with fourth-order accuracy in space. The interconnect thermal simulation is described in a partial differential equation (PDE), and solved by finite difference time domain (FDTD) techniques using a fourth-order approximation of the spatial partial derivative in the PDE. A recently developed numerically stable algorithm for inversion of block tridiagonal and banded matrices is applied when the thermal simulation is conducted using Crank-Nicolson method with fourth-order spatial accuracy. We have promising simulation results, showing that the proposed method can have more accurate temperature profile before reaching the steady state than the traditional menthols and the runtime is linearly proportional to the number of nodes.\",\"PeriodicalId\":344917,\"journal\":{\"name\":\"APCCAS 2008 - 2008 IEEE Asia Pacific Conference on Circuits and Systems\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"APCCAS 2008 - 2008 IEEE Asia Pacific Conference on Circuits and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APCCAS.2008.4746086\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"APCCAS 2008 - 2008 IEEE Asia Pacific Conference on Circuits and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APCCAS.2008.4746086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文报道了一种在空间上具有四阶精度的互连热剖面的数值分析。用偏微分方程(PDE)描述互连热模拟,并利用PDE中空间偏导数的四阶近似,采用时域有限差分(FDTD)技术求解互连热模拟。在采用四阶空间精度的Crank-Nicolson方法进行热模拟时,采用了最近发展的一种数值稳定的块三对角线和带状矩阵反演算法。仿真结果表明,与传统方法相比,该方法在达到稳态前具有更精确的温度分布,且运行时间与节点数成线性关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interconnect thermal simulation with higher order spatial accuracy
This paper reports on a numerical analysis of interconnect thermal profile with fourth-order accuracy in space. The interconnect thermal simulation is described in a partial differential equation (PDE), and solved by finite difference time domain (FDTD) techniques using a fourth-order approximation of the spatial partial derivative in the PDE. A recently developed numerically stable algorithm for inversion of block tridiagonal and banded matrices is applied when the thermal simulation is conducted using Crank-Nicolson method with fourth-order spatial accuracy. We have promising simulation results, showing that the proposed method can have more accurate temperature profile before reaching the steady state than the traditional menthols and the runtime is linearly proportional to the number of nodes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信