{"title":"利用Kullback-Leibler散度挖掘消极和积极影响规则","authors":"L. N. Alachaher, S. Guillaume","doi":"10.1109/ICCGI.2007.38","DOIUrl":null,"url":null,"abstract":"This paper describes a new method for mining negative and positive quantitative influence rules based on a coordination between a statistical dissimilarity measure (Kullback Leibler divergence) and contingency tables. This coordination identifies the significant positive and negative correlations and enables pertinent influence rules extraction.","PeriodicalId":102568,"journal":{"name":"2007 International Multi-Conference on Computing in the Global Information Technology (ICCGI'07)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Mining Negative and Positive Influence Rules Using Kullback-Leibler Divergence\",\"authors\":\"L. N. Alachaher, S. Guillaume\",\"doi\":\"10.1109/ICCGI.2007.38\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes a new method for mining negative and positive quantitative influence rules based on a coordination between a statistical dissimilarity measure (Kullback Leibler divergence) and contingency tables. This coordination identifies the significant positive and negative correlations and enables pertinent influence rules extraction.\",\"PeriodicalId\":102568,\"journal\":{\"name\":\"2007 International Multi-Conference on Computing in the Global Information Technology (ICCGI'07)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 International Multi-Conference on Computing in the Global Information Technology (ICCGI'07)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCGI.2007.38\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Multi-Conference on Computing in the Global Information Technology (ICCGI'07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCGI.2007.38","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Mining Negative and Positive Influence Rules Using Kullback-Leibler Divergence
This paper describes a new method for mining negative and positive quantitative influence rules based on a coordination between a statistical dissimilarity measure (Kullback Leibler divergence) and contingency tables. This coordination identifies the significant positive and negative correlations and enables pertinent influence rules extraction.