D-NetPAD:一个可解释和可解释的虹膜表示攻击检测器

Renu Sharma, A. Ross
{"title":"D-NetPAD:一个可解释和可解释的虹膜表示攻击检测器","authors":"Renu Sharma, A. Ross","doi":"10.1109/IJCB48548.2020.9304880","DOIUrl":null,"url":null,"abstract":"An iris recognition system is vulnerable to presentation attacks, or PAs, where an adversary presents artifacts such as printed eyes, plastic eyes, or cosmetic contact lenses to circumvent the system. In this work, we propose an effective and robust iris PA detector called D-NetPAD based on the DenseNet convolutional neural network architecture. It demonstrates generalizability across PA artifacts, sensors and datasets. Experiments conducted on a proprietary dataset and a publicly available dataset (LivDet-2017) substantiate the effectiveness of the proposed method for iris PA detection. The proposed method results in a true detection rate of 98.58% at a false detection rate of 0.2% on the proprietary dataset and outperforms state-of-the-art methods on the LivDet-2017 dataset. We visualize intermediate feature distributions and fixation heatmaps using t-SNE plots and Grad-CAM, respectively, in order to explain the performance of D-NetPAD. Further, we conduct a frequency analysis to explain the nature of features being extracted by the network. The source code and trained model are available at https://github.com/iPRoBe-lab/D-NetPAD.","PeriodicalId":417270,"journal":{"name":"2020 IEEE International Joint Conference on Biometrics (IJCB)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":"{\"title\":\"D-NetPAD: An Explainable and Interpretable Iris Presentation Attack Detector\",\"authors\":\"Renu Sharma, A. Ross\",\"doi\":\"10.1109/IJCB48548.2020.9304880\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An iris recognition system is vulnerable to presentation attacks, or PAs, where an adversary presents artifacts such as printed eyes, plastic eyes, or cosmetic contact lenses to circumvent the system. In this work, we propose an effective and robust iris PA detector called D-NetPAD based on the DenseNet convolutional neural network architecture. It demonstrates generalizability across PA artifacts, sensors and datasets. Experiments conducted on a proprietary dataset and a publicly available dataset (LivDet-2017) substantiate the effectiveness of the proposed method for iris PA detection. The proposed method results in a true detection rate of 98.58% at a false detection rate of 0.2% on the proprietary dataset and outperforms state-of-the-art methods on the LivDet-2017 dataset. We visualize intermediate feature distributions and fixation heatmaps using t-SNE plots and Grad-CAM, respectively, in order to explain the performance of D-NetPAD. Further, we conduct a frequency analysis to explain the nature of features being extracted by the network. The source code and trained model are available at https://github.com/iPRoBe-lab/D-NetPAD.\",\"PeriodicalId\":417270,\"journal\":{\"name\":\"2020 IEEE International Joint Conference on Biometrics (IJCB)\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"36\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Joint Conference on Biometrics (IJCB)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCB48548.2020.9304880\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Joint Conference on Biometrics (IJCB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCB48548.2020.9304880","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36

摘要

虹膜识别系统很容易受到展示攻击(pa)的攻击,攻击者会展示打印的眼睛、塑料眼睛或美容隐形眼镜等人工制品来绕过系统。在这项工作中,我们提出了一种基于DenseNet卷积神经网络架构的有效且鲁棒的虹膜PA检测器D-NetPAD。它展示了跨PA工件、传感器和数据集的通用性。在专有数据集和公开数据集(LivDet-2017)上进行的实验证实了所提出的虹膜PA检测方法的有效性。该方法在专有数据集上的真实检测率为98.58%,假检测率为0.2%,并且优于LivDet-2017数据集上的最先进方法。为了解释D-NetPAD的性能,我们分别使用t-SNE图和Grad-CAM来可视化中间特征分布和固定热图。此外,我们进行频率分析来解释由网络提取的特征的性质。源代码和经过训练的模型可在https://github.com/iPRoBe-lab/D-NetPAD上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
D-NetPAD: An Explainable and Interpretable Iris Presentation Attack Detector
An iris recognition system is vulnerable to presentation attacks, or PAs, where an adversary presents artifacts such as printed eyes, plastic eyes, or cosmetic contact lenses to circumvent the system. In this work, we propose an effective and robust iris PA detector called D-NetPAD based on the DenseNet convolutional neural network architecture. It demonstrates generalizability across PA artifacts, sensors and datasets. Experiments conducted on a proprietary dataset and a publicly available dataset (LivDet-2017) substantiate the effectiveness of the proposed method for iris PA detection. The proposed method results in a true detection rate of 98.58% at a false detection rate of 0.2% on the proprietary dataset and outperforms state-of-the-art methods on the LivDet-2017 dataset. We visualize intermediate feature distributions and fixation heatmaps using t-SNE plots and Grad-CAM, respectively, in order to explain the performance of D-NetPAD. Further, we conduct a frequency analysis to explain the nature of features being extracted by the network. The source code and trained model are available at https://github.com/iPRoBe-lab/D-NetPAD.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信