基于DWT和SVM的单通道肌电信号分类

Cherrih Hachemi, M. Talha, Hadjer Zairi, Karim Meddah
{"title":"基于DWT和SVM的单通道肌电信号分类","authors":"Cherrih Hachemi, M. Talha, Hadjer Zairi, Karim Meddah","doi":"10.1109/IHSH51661.2021.9378707","DOIUrl":null,"url":null,"abstract":"In order to develop a prototype of upper limb prosthetic, we present in this paper our contribution to the design of an intelligent classification system for the arm's flexion and extension. The first step, we designed a simple and efficient single channel of electro myogram signal (EMG) acquisition circuit in order to create two databases that contains EMG signals matrices of both flexion and extension of the arm. Our work proves that only one statistical feature, the energy of detail coefficients for the first four decomposition levels, is sufficient to represent these databases. We applied the principal component analysis PCA to reduce the data space and keep the most relevant ones. In order to detect flexion or extension movement, classification by Support Vector Machines (SVM) has made possible for us to achieve recognition rate of 100% using a wise choice of discret wavelet transform (DWT).","PeriodicalId":127735,"journal":{"name":"2020 2nd International Workshop on Human-Centric Smart Environments for Health and Well-being (IHSH)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Single channel EMG classification using DWT and SVM\",\"authors\":\"Cherrih Hachemi, M. Talha, Hadjer Zairi, Karim Meddah\",\"doi\":\"10.1109/IHSH51661.2021.9378707\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to develop a prototype of upper limb prosthetic, we present in this paper our contribution to the design of an intelligent classification system for the arm's flexion and extension. The first step, we designed a simple and efficient single channel of electro myogram signal (EMG) acquisition circuit in order to create two databases that contains EMG signals matrices of both flexion and extension of the arm. Our work proves that only one statistical feature, the energy of detail coefficients for the first four decomposition levels, is sufficient to represent these databases. We applied the principal component analysis PCA to reduce the data space and keep the most relevant ones. In order to detect flexion or extension movement, classification by Support Vector Machines (SVM) has made possible for us to achieve recognition rate of 100% using a wise choice of discret wavelet transform (DWT).\",\"PeriodicalId\":127735,\"journal\":{\"name\":\"2020 2nd International Workshop on Human-Centric Smart Environments for Health and Well-being (IHSH)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 2nd International Workshop on Human-Centric Smart Environments for Health and Well-being (IHSH)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IHSH51661.2021.9378707\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 2nd International Workshop on Human-Centric Smart Environments for Health and Well-being (IHSH)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IHSH51661.2021.9378707","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

为了开发上肢假肢的原型,本文介绍了我们对手臂屈伸智能分类系统的设计。第一步,我们设计了一个简单高效的单通道肌电信号采集电路,以创建包含手臂屈伸肌电信号矩阵的两个数据库。我们的工作证明,只有一个统计特征,即前四个分解层次的细节系数能量,足以表示这些数据库。我们运用主成分分析(PCA)来减少数据空间,保留最相关的数据。为了检测弯曲或伸展运动,支持向量机(SVM)分类使我们能够实现100%的识别率,并明智地选择离散小波变换(DWT)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Single channel EMG classification using DWT and SVM
In order to develop a prototype of upper limb prosthetic, we present in this paper our contribution to the design of an intelligent classification system for the arm's flexion and extension. The first step, we designed a simple and efficient single channel of electro myogram signal (EMG) acquisition circuit in order to create two databases that contains EMG signals matrices of both flexion and extension of the arm. Our work proves that only one statistical feature, the energy of detail coefficients for the first four decomposition levels, is sufficient to represent these databases. We applied the principal component analysis PCA to reduce the data space and keep the most relevant ones. In order to detect flexion or extension movement, classification by Support Vector Machines (SVM) has made possible for us to achieve recognition rate of 100% using a wise choice of discret wavelet transform (DWT).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信