线性分数群上的自对偶,自皮特对偶和Möbius正则映射

G. Erskine, Katarína Hriňáková, Olivia Jeans
{"title":"线性分数群上的自对偶,自皮特对偶和Möbius正则映射","authors":"G. Erskine, Katarína Hriňáková, Olivia Jeans","doi":"10.26493/2590-9770.1263.86e","DOIUrl":null,"url":null,"abstract":"Regular maps on linear fractional groups $PSL(2,q)$ and $PGL(2,q$) have been studied for many years and the theory is well-developed, including generating sets for the asscoiated groups. This paper studies the properties of self-duality, self-Petrie-duality and Mobius regularity in this context, providing necessary and sufficient conditions for each case. We also address the special case for regular maps of type (5,5). The final section includes an enumeration of the $PSL(2,q)$ maps for $q\\le81$ and a list of all the $PSL(2,q)$ maps which have any of these special properties for $q\\le49$.","PeriodicalId":236892,"journal":{"name":"Art Discret. Appl. Math.","volume":"88 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Self-dual, self-Petrie-dual and Möbius regular maps on linear fractional groups\",\"authors\":\"G. Erskine, Katarína Hriňáková, Olivia Jeans\",\"doi\":\"10.26493/2590-9770.1263.86e\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Regular maps on linear fractional groups $PSL(2,q)$ and $PGL(2,q$) have been studied for many years and the theory is well-developed, including generating sets for the asscoiated groups. This paper studies the properties of self-duality, self-Petrie-duality and Mobius regularity in this context, providing necessary and sufficient conditions for each case. We also address the special case for regular maps of type (5,5). The final section includes an enumeration of the $PSL(2,q)$ maps for $q\\\\le81$ and a list of all the $PSL(2,q)$ maps which have any of these special properties for $q\\\\le49$.\",\"PeriodicalId\":236892,\"journal\":{\"name\":\"Art Discret. Appl. Math.\",\"volume\":\"88 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Art Discret. Appl. Math.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26493/2590-9770.1263.86e\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Art Discret. Appl. Math.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26493/2590-9770.1263.86e","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

线性分数群$PSL(2,q)$和$PGL(2,q)$上的正则映射已经研究了多年,理论也很发达,包括相关群的生成集。本文在此基础上研究了自对偶性、自皮特对偶性和莫比乌斯正则性的性质,并给出了每种情况的充分必要条件。我们还讨论了类型为(5,5)的正则映射的特殊情况。最后一节包括$q\le81$的$PSL(2,q)$映射的枚举,以及$q\le49$的所有具有这些特殊属性的$PSL(2,q)$映射的列表。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Self-dual, self-Petrie-dual and Möbius regular maps on linear fractional groups
Regular maps on linear fractional groups $PSL(2,q)$ and $PGL(2,q$) have been studied for many years and the theory is well-developed, including generating sets for the asscoiated groups. This paper studies the properties of self-duality, self-Petrie-duality and Mobius regularity in this context, providing necessary and sufficient conditions for each case. We also address the special case for regular maps of type (5,5). The final section includes an enumeration of the $PSL(2,q)$ maps for $q\le81$ and a list of all the $PSL(2,q)$ maps which have any of these special properties for $q\le49$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信