时序配电潮流下DG集成二次配电网的无功资源再分配

Kalpesh A. Joshi, N. Pindoriya
{"title":"时序配电潮流下DG集成二次配电网的无功资源再分配","authors":"Kalpesh A. Joshi, N. Pindoriya","doi":"10.1109/PEDES.2014.7042111","DOIUrl":null,"url":null,"abstract":"While penetration of Distributed Generators (DGs) has been increasing with favorable government policies coupled with technological advances in portable deployment of DGs, the challenges of efficient network operations in secondary distribution networks have also become formidable. Among other issues, the real power penetration from PV and Wind generators causes imbalance between real and reactive power flows in low voltage distribution networks where phase unbalancing and variation in demand-supply have dominant effect on voltage profile, overloads, power factor and losses. This paper attempts to apply sequential time simulations approach by performing distribution power flow simulations for time-series data points of demand and generation over a period of one year at 15 minute intervals. This approach helps in capturing the diurnal and seasonal variability of intermittent power producing DGs and that of load profiles. It also helps in undertaking time integral studies for energy losses, number of switching operations by control devices such as shunt compensators and voltage regulators. The results of this exercise are used to propose different switching strategies to limit voltage limit violations while reducing annual energy losses.","PeriodicalId":124701,"journal":{"name":"2014 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Reactive resource reallocation in DG integrated secondary distribution networks with time-series distribution power flow\",\"authors\":\"Kalpesh A. Joshi, N. Pindoriya\",\"doi\":\"10.1109/PEDES.2014.7042111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"While penetration of Distributed Generators (DGs) has been increasing with favorable government policies coupled with technological advances in portable deployment of DGs, the challenges of efficient network operations in secondary distribution networks have also become formidable. Among other issues, the real power penetration from PV and Wind generators causes imbalance between real and reactive power flows in low voltage distribution networks where phase unbalancing and variation in demand-supply have dominant effect on voltage profile, overloads, power factor and losses. This paper attempts to apply sequential time simulations approach by performing distribution power flow simulations for time-series data points of demand and generation over a period of one year at 15 minute intervals. This approach helps in capturing the diurnal and seasonal variability of intermittent power producing DGs and that of load profiles. It also helps in undertaking time integral studies for energy losses, number of switching operations by control devices such as shunt compensators and voltage regulators. The results of this exercise are used to propose different switching strategies to limit voltage limit violations while reducing annual energy losses.\",\"PeriodicalId\":124701,\"journal\":{\"name\":\"2014 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PEDES.2014.7042111\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PEDES.2014.7042111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

随着有利的政府政策以及便携式分布式发电机部署技术的进步,分布式发电机的渗透率不断提高,二级配电网的高效网络运营挑战也变得艰巨。其中,光伏和风力发电的实际电力渗透会导致低压配电网中实际和无功潮流的不平衡,其中相位不平衡和供需变化对电压分布、过载、功率因数和损耗的影响占主导地位。本文试图应用顺序时间模拟方法,对一年内每隔15分钟的需求和发电量的时间序列数据点进行配电潮流模拟。这种方法有助于捕获间歇式发电dg的日变化和季节变化以及负载概况。它还有助于进行能量损失的时间积分研究,通过控制装置(如分流补偿器和电压调节器)进行开关操作的数量。这个练习的结果被用来提出不同的开关策略来限制电压极限违反,同时减少年能量损失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reactive resource reallocation in DG integrated secondary distribution networks with time-series distribution power flow
While penetration of Distributed Generators (DGs) has been increasing with favorable government policies coupled with technological advances in portable deployment of DGs, the challenges of efficient network operations in secondary distribution networks have also become formidable. Among other issues, the real power penetration from PV and Wind generators causes imbalance between real and reactive power flows in low voltage distribution networks where phase unbalancing and variation in demand-supply have dominant effect on voltage profile, overloads, power factor and losses. This paper attempts to apply sequential time simulations approach by performing distribution power flow simulations for time-series data points of demand and generation over a period of one year at 15 minute intervals. This approach helps in capturing the diurnal and seasonal variability of intermittent power producing DGs and that of load profiles. It also helps in undertaking time integral studies for energy losses, number of switching operations by control devices such as shunt compensators and voltage regulators. The results of this exercise are used to propose different switching strategies to limit voltage limit violations while reducing annual energy losses.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信