Yamabe方程线性扰动的聚类现象

A. Pistoia, Giusi Vaira
{"title":"Yamabe方程线性扰动的聚类现象","authors":"A. Pistoia, Giusi Vaira","doi":"10.1017/9781108367639.009","DOIUrl":null,"url":null,"abstract":"Let $(M,g)$ be a non-locally conformally flat compact Riemannian manifold with dimension $N\\ge7.$ We are interested in finding positive solutions to the linear perturbation of the Yamabe problem $$-\\mathcal L_g u+\\epsilon u=u^{N+2\\over N-2}\\ \\hbox{in}\\ (M,g) $$ where the first eigenvalue of the conformal laplacian $-\\mathcal L_g $ is positive and $\\epsilon$ is a small positive parameter. We prove that for any point $\\xi_0\\in M$ which is non-degenerate and non-vanishing minimum point of the Weyl's tensor and for any integer $k$ there exists a family of solutions developing $k$ peaks collapsing at $\\xi_0$ as $\\epsilon$ goes to zero. In particular, $\\xi_0$ is a non-isolated blow-up point.","PeriodicalId":286685,"journal":{"name":"Partial Differential Equations Arising from Physics and Geometry","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Clustering Phenomena for Linear Perturbation of the Yamabe Equation\",\"authors\":\"A. Pistoia, Giusi Vaira\",\"doi\":\"10.1017/9781108367639.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $(M,g)$ be a non-locally conformally flat compact Riemannian manifold with dimension $N\\\\ge7.$ We are interested in finding positive solutions to the linear perturbation of the Yamabe problem $$-\\\\mathcal L_g u+\\\\epsilon u=u^{N+2\\\\over N-2}\\\\ \\\\hbox{in}\\\\ (M,g) $$ where the first eigenvalue of the conformal laplacian $-\\\\mathcal L_g $ is positive and $\\\\epsilon$ is a small positive parameter. We prove that for any point $\\\\xi_0\\\\in M$ which is non-degenerate and non-vanishing minimum point of the Weyl's tensor and for any integer $k$ there exists a family of solutions developing $k$ peaks collapsing at $\\\\xi_0$ as $\\\\epsilon$ goes to zero. In particular, $\\\\xi_0$ is a non-isolated blow-up point.\",\"PeriodicalId\":286685,\"journal\":{\"name\":\"Partial Differential Equations Arising from Physics and Geometry\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Partial Differential Equations Arising from Physics and Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/9781108367639.009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Partial Differential Equations Arising from Physics and Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/9781108367639.009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

设$(M,g)$为维数为$N\ge7.$的非局部共形平坦紧黎曼流形我们感兴趣的是寻找Yamabe问题$$-\mathcal L_g u+\epsilon u=u^{N+2\over N-2}\ \hbox{in}\ (M,g) $$的线性摄动的正解,其中共形拉普拉斯流形$-\mathcal L_g $的第一特征值是正的,$\epsilon$是一个小的正参数。我们证明了对于任意点$\xi_0\in M$(它是Weyl张量的非简并非消失的最小点)和任意整数$k$,存在一组解,当$\epsilon$趋于零时,在$\xi_0$处出现坍塌的$k$峰。特别是,$\xi_0$是一个非孤立的爆炸点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Clustering Phenomena for Linear Perturbation of the Yamabe Equation
Let $(M,g)$ be a non-locally conformally flat compact Riemannian manifold with dimension $N\ge7.$ We are interested in finding positive solutions to the linear perturbation of the Yamabe problem $$-\mathcal L_g u+\epsilon u=u^{N+2\over N-2}\ \hbox{in}\ (M,g) $$ where the first eigenvalue of the conformal laplacian $-\mathcal L_g $ is positive and $\epsilon$ is a small positive parameter. We prove that for any point $\xi_0\in M$ which is non-degenerate and non-vanishing minimum point of the Weyl's tensor and for any integer $k$ there exists a family of solutions developing $k$ peaks collapsing at $\xi_0$ as $\epsilon$ goes to zero. In particular, $\xi_0$ is a non-isolated blow-up point.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信