{"title":"一种实用的非交互式可验证秘密共享方案","authors":"Paul Feldman","doi":"10.1109/SFCS.1987.4","DOIUrl":null,"url":null,"abstract":"This paper presents an extremely efficient, non-interactive protocol for verifiable secret sharing. Verifiable secret sharing (VSS) is a way of bequeathing information to a set of processors such that a quorum of processors is needed to access the information. VSS is a fundamental tool of cryptography and distributed computing. Seemingly difficult problems such as secret bidding, fair voting, leader election, and flipping a fair coin have simple one-round reductions to VSS. There is a constant-round reduction from Byzantine Agreement to non-interactive VSS. Non-interactive VSS provides asynchronous networks with a constant-round simulation of simultaneous broadcast networks whenever even a bare majority of processors are good. VSS is constantly repeated in the simulation of fault-free protocols by faulty systems. As verifiable secret sharing is a bottleneck for so many results, it is essential to find efficient solutions.","PeriodicalId":153779,"journal":{"name":"28th Annual Symposium on Foundations of Computer Science (sfcs 1987)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1987-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1213","resultStr":"{\"title\":\"A practical scheme for non-interactive verifiable secret sharing\",\"authors\":\"Paul Feldman\",\"doi\":\"10.1109/SFCS.1987.4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an extremely efficient, non-interactive protocol for verifiable secret sharing. Verifiable secret sharing (VSS) is a way of bequeathing information to a set of processors such that a quorum of processors is needed to access the information. VSS is a fundamental tool of cryptography and distributed computing. Seemingly difficult problems such as secret bidding, fair voting, leader election, and flipping a fair coin have simple one-round reductions to VSS. There is a constant-round reduction from Byzantine Agreement to non-interactive VSS. Non-interactive VSS provides asynchronous networks with a constant-round simulation of simultaneous broadcast networks whenever even a bare majority of processors are good. VSS is constantly repeated in the simulation of fault-free protocols by faulty systems. As verifiable secret sharing is a bottleneck for so many results, it is essential to find efficient solutions.\",\"PeriodicalId\":153779,\"journal\":{\"name\":\"28th Annual Symposium on Foundations of Computer Science (sfcs 1987)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1987-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1213\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"28th Annual Symposium on Foundations of Computer Science (sfcs 1987)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SFCS.1987.4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"28th Annual Symposium on Foundations of Computer Science (sfcs 1987)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFCS.1987.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A practical scheme for non-interactive verifiable secret sharing
This paper presents an extremely efficient, non-interactive protocol for verifiable secret sharing. Verifiable secret sharing (VSS) is a way of bequeathing information to a set of processors such that a quorum of processors is needed to access the information. VSS is a fundamental tool of cryptography and distributed computing. Seemingly difficult problems such as secret bidding, fair voting, leader election, and flipping a fair coin have simple one-round reductions to VSS. There is a constant-round reduction from Byzantine Agreement to non-interactive VSS. Non-interactive VSS provides asynchronous networks with a constant-round simulation of simultaneous broadcast networks whenever even a bare majority of processors are good. VSS is constantly repeated in the simulation of fault-free protocols by faulty systems. As verifiable secret sharing is a bottleneck for so many results, it is essential to find efficient solutions.