基于时变加速系数的量子群进化算法的虚拟企业合作伙伴选择

Jian-hua Xiao, Bing-lian Liu
{"title":"基于时变加速系数的量子群进化算法的虚拟企业合作伙伴选择","authors":"Jian-hua Xiao, Bing-lian Liu","doi":"10.1109/BICTA.2009.5338071","DOIUrl":null,"url":null,"abstract":"Partner selection is one of the most critical issue in virtual enterprise, which has been extensively researched in recent years. It is difficult to be solved by the traditional optimization methods for partner selection is a combinatorial optimization problem. In this paper, an improved quantum swarm evolutionary algorithm based on time-varying acceleration coefficients (IQSEA_TVAC) is proposed for partner selection optimization problem. The results of simulation experiments show that the improved algorithm is valid and outperforms the conventional quantum evolutionary algorithm.","PeriodicalId":161787,"journal":{"name":"2009 Fourth International on Conference on Bio-Inspired Computing","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Quantum swarm evolutionary algorithm with time-varying acceleration coefficients for partner selection in virtual enterprise\",\"authors\":\"Jian-hua Xiao, Bing-lian Liu\",\"doi\":\"10.1109/BICTA.2009.5338071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Partner selection is one of the most critical issue in virtual enterprise, which has been extensively researched in recent years. It is difficult to be solved by the traditional optimization methods for partner selection is a combinatorial optimization problem. In this paper, an improved quantum swarm evolutionary algorithm based on time-varying acceleration coefficients (IQSEA_TVAC) is proposed for partner selection optimization problem. The results of simulation experiments show that the improved algorithm is valid and outperforms the conventional quantum evolutionary algorithm.\",\"PeriodicalId\":161787,\"journal\":{\"name\":\"2009 Fourth International on Conference on Bio-Inspired Computing\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Fourth International on Conference on Bio-Inspired Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BICTA.2009.5338071\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Fourth International on Conference on Bio-Inspired Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BICTA.2009.5338071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

合作伙伴选择是虚拟企业中最关键的问题之一,近年来得到了广泛的研究。合作伙伴选择是一个组合优化问题,是传统优化方法难以解决的问题。本文提出了一种改进的基于时变加速度系数的量子群进化算法(IQSEA_TVAC),用于伙伴选择优化问题。仿真实验结果表明,改进算法是有效的,优于传统的量子进化算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantum swarm evolutionary algorithm with time-varying acceleration coefficients for partner selection in virtual enterprise
Partner selection is one of the most critical issue in virtual enterprise, which has been extensively researched in recent years. It is difficult to be solved by the traditional optimization methods for partner selection is a combinatorial optimization problem. In this paper, an improved quantum swarm evolutionary algorithm based on time-varying acceleration coefficients (IQSEA_TVAC) is proposed for partner selection optimization problem. The results of simulation experiments show that the improved algorithm is valid and outperforms the conventional quantum evolutionary algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信