动态环境下多相机系统的鲁棒定位方法

Marco Sewtz, Xiaozhou Luo, J. Landgraf, T. Bodenmüller, Rudolph Triebel
{"title":"动态环境下多相机系统的鲁棒定位方法","authors":"Marco Sewtz, Xiaozhou Luo, J. Landgraf, T. Bodenmüller, Rudolph Triebel","doi":"10.1109/ICARA51699.2021.9376475","DOIUrl":null,"url":null,"abstract":"Localization of humanoid robots in real-life scenarios has to robustly tackle dynamic environments and provide coherent data and tight integration for follow-up tasks. However state-of-the-art solutions, like ORBSlam2 [1], lack this ability. In this work we present two adaptations of ORBSlam2 for a multi-camera setup on the DLR Rollin' Justin System, one distributed multi-slam and one combined single-process system. Further, we introduce the usage of pre-recorded maps with ORBSlam2 and the alignment with semantic maps for planning. We compare performance of the adaptations against and the original approach in realistic experiments and discuss advantages and disadvantages of all methods.","PeriodicalId":183788,"journal":{"name":"2021 7th International Conference on Automation, Robotics and Applications (ICARA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Robust Approaches for Localization on Multi-camera Systems in Dynamic Environments\",\"authors\":\"Marco Sewtz, Xiaozhou Luo, J. Landgraf, T. Bodenmüller, Rudolph Triebel\",\"doi\":\"10.1109/ICARA51699.2021.9376475\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Localization of humanoid robots in real-life scenarios has to robustly tackle dynamic environments and provide coherent data and tight integration for follow-up tasks. However state-of-the-art solutions, like ORBSlam2 [1], lack this ability. In this work we present two adaptations of ORBSlam2 for a multi-camera setup on the DLR Rollin' Justin System, one distributed multi-slam and one combined single-process system. Further, we introduce the usage of pre-recorded maps with ORBSlam2 and the alignment with semantic maps for planning. We compare performance of the adaptations against and the original approach in realistic experiments and discuss advantages and disadvantages of all methods.\",\"PeriodicalId\":183788,\"journal\":{\"name\":\"2021 7th International Conference on Automation, Robotics and Applications (ICARA)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 7th International Conference on Automation, Robotics and Applications (ICARA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICARA51699.2021.9376475\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 7th International Conference on Automation, Robotics and Applications (ICARA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICARA51699.2021.9376475","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

人形机器人在现实场景中的定位必须能够强大地应对动态环境,并为后续任务提供连贯的数据和紧密的集成。然而,最先进的解决方案,如orbslam2b[1],缺乏这种能力。在这项工作中,我们提出了两个适用于DLR Rollin' Justin系统的ORBSlam2的多相机设置,一个是分布式多slam和一个是组合单进程系统。此外,我们还介绍了在ORBSlam2中使用预先录制的地图,并与用于规划的语义地图保持一致。我们在实际实验中比较了这些方法的性能,并讨论了各种方法的优缺点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust Approaches for Localization on Multi-camera Systems in Dynamic Environments
Localization of humanoid robots in real-life scenarios has to robustly tackle dynamic environments and provide coherent data and tight integration for follow-up tasks. However state-of-the-art solutions, like ORBSlam2 [1], lack this ability. In this work we present two adaptations of ORBSlam2 for a multi-camera setup on the DLR Rollin' Justin System, one distributed multi-slam and one combined single-process system. Further, we introduce the usage of pre-recorded maps with ORBSlam2 and the alignment with semantic maps for planning. We compare performance of the adaptations against and the original approach in realistic experiments and discuss advantages and disadvantages of all methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信