使用手腕运动和表面肌电传感器的实时美国手语识别

Jian Wu, Zhongjun Tian, Lu Sun, L. Estevez, R. Jafari
{"title":"使用手腕运动和表面肌电传感器的实时美国手语识别","authors":"Jian Wu, Zhongjun Tian, Lu Sun, L. Estevez, R. Jafari","doi":"10.1109/BSN.2015.7299393","DOIUrl":null,"url":null,"abstract":"A Sign Language Recognition (SLR) system enables communication between hearing disabled individuals and those who can hear and speak. With the prevalence of the wearable computers, this technology is becoming an important human computer interface capable of reading hand gestures and inferring user;s intent. In this paper, we propose a real-time American SLR system leveraging fusion of surface electromyography (sEMG) and a wrist-worn inertial sensor at the feature level. A feature selection is provided for 40 most commonly used words and for four subjects. The experimental results show that after feature selection and conditioning, our system achieves 95.94% recognition rate. The results also illustrate the fusion of two modalities perform better than using only the inertial sensor. We observed that only one channel of sEMG (out of four) located on the wrist and under the wrist-watch is sufficient.","PeriodicalId":447934,"journal":{"name":"2015 IEEE 12th International Conference on Wearable and Implantable Body Sensor Networks (BSN)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"75","resultStr":"{\"title\":\"Real-time American Sign Language Recognition using wrist-worn motion and surface EMG sensors\",\"authors\":\"Jian Wu, Zhongjun Tian, Lu Sun, L. Estevez, R. Jafari\",\"doi\":\"10.1109/BSN.2015.7299393\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A Sign Language Recognition (SLR) system enables communication between hearing disabled individuals and those who can hear and speak. With the prevalence of the wearable computers, this technology is becoming an important human computer interface capable of reading hand gestures and inferring user;s intent. In this paper, we propose a real-time American SLR system leveraging fusion of surface electromyography (sEMG) and a wrist-worn inertial sensor at the feature level. A feature selection is provided for 40 most commonly used words and for four subjects. The experimental results show that after feature selection and conditioning, our system achieves 95.94% recognition rate. The results also illustrate the fusion of two modalities perform better than using only the inertial sensor. We observed that only one channel of sEMG (out of four) located on the wrist and under the wrist-watch is sufficient.\",\"PeriodicalId\":447934,\"journal\":{\"name\":\"2015 IEEE 12th International Conference on Wearable and Implantable Body Sensor Networks (BSN)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"75\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 12th International Conference on Wearable and Implantable Body Sensor Networks (BSN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BSN.2015.7299393\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 12th International Conference on Wearable and Implantable Body Sensor Networks (BSN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BSN.2015.7299393","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 75

摘要

手语识别(SLR)系统使听障人士和能听能说的人之间的交流成为可能。随着可穿戴计算机的普及,该技术正在成为一种重要的人机界面,能够读取手势并推断用户的意图。在本文中,我们提出了一种实时的美国单反系统,该系统利用了表面肌电图(sEMG)和腕带惯性传感器在特征层面的融合。提供了40个最常用单词和4个主题的特征选择。实验结果表明,经过特征选择和调理后,系统的识别率达到95.94%。结果还表明,两种模态融合比仅使用惯性传感器效果更好。我们观察到,位于手腕和腕表下方的四个通道中,只有一个通道是足够的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Real-time American Sign Language Recognition using wrist-worn motion and surface EMG sensors
A Sign Language Recognition (SLR) system enables communication between hearing disabled individuals and those who can hear and speak. With the prevalence of the wearable computers, this technology is becoming an important human computer interface capable of reading hand gestures and inferring user;s intent. In this paper, we propose a real-time American SLR system leveraging fusion of surface electromyography (sEMG) and a wrist-worn inertial sensor at the feature level. A feature selection is provided for 40 most commonly used words and for four subjects. The experimental results show that after feature selection and conditioning, our system achieves 95.94% recognition rate. The results also illustrate the fusion of two modalities perform better than using only the inertial sensor. We observed that only one channel of sEMG (out of four) located on the wrist and under the wrist-watch is sufficient.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信