{"title":"用于携带目标检测的超像素形状分析","authors":"Blanca Delgado, Khalid Tahboub, E. Delp","doi":"10.1109/WACVW.2016.7470116","DOIUrl":null,"url":null,"abstract":"Video surveillance systems generate enormous amounts of data which makes the continuous monitoring of video a very difficult task. Re-identification of subjects in video surveillance systems plays a significant role in public safety. Recent work has focused on appearance modeling and distance learning to establish correspondence between images. However, real-life scenarios suggest that the majority of clothing worn tends to be non-discriminative. Attributes- based re-identification methods try to solve this problem by incorporating semantic attributes which are mid-level features learned a prior. In this paper we present a framework to recognize attributes with applications to carried objects detection. We present a supervised approach based on the contours and shapes of superpixels and histogram of oriented gradients. An experimental evaluation is described using a dataset that was recorded at the Greater Cleveland Regional Transit Authority.","PeriodicalId":185674,"journal":{"name":"2016 IEEE Winter Applications of Computer Vision Workshops (WACVW)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Superpixels shape analysis for carried object detection\",\"authors\":\"Blanca Delgado, Khalid Tahboub, E. Delp\",\"doi\":\"10.1109/WACVW.2016.7470116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Video surveillance systems generate enormous amounts of data which makes the continuous monitoring of video a very difficult task. Re-identification of subjects in video surveillance systems plays a significant role in public safety. Recent work has focused on appearance modeling and distance learning to establish correspondence between images. However, real-life scenarios suggest that the majority of clothing worn tends to be non-discriminative. Attributes- based re-identification methods try to solve this problem by incorporating semantic attributes which are mid-level features learned a prior. In this paper we present a framework to recognize attributes with applications to carried objects detection. We present a supervised approach based on the contours and shapes of superpixels and histogram of oriented gradients. An experimental evaluation is described using a dataset that was recorded at the Greater Cleveland Regional Transit Authority.\",\"PeriodicalId\":185674,\"journal\":{\"name\":\"2016 IEEE Winter Applications of Computer Vision Workshops (WACVW)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Winter Applications of Computer Vision Workshops (WACVW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WACVW.2016.7470116\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Winter Applications of Computer Vision Workshops (WACVW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACVW.2016.7470116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Superpixels shape analysis for carried object detection
Video surveillance systems generate enormous amounts of data which makes the continuous monitoring of video a very difficult task. Re-identification of subjects in video surveillance systems plays a significant role in public safety. Recent work has focused on appearance modeling and distance learning to establish correspondence between images. However, real-life scenarios suggest that the majority of clothing worn tends to be non-discriminative. Attributes- based re-identification methods try to solve this problem by incorporating semantic attributes which are mid-level features learned a prior. In this paper we present a framework to recognize attributes with applications to carried objects detection. We present a supervised approach based on the contours and shapes of superpixels and histogram of oriented gradients. An experimental evaluation is described using a dataset that was recorded at the Greater Cleveland Regional Transit Authority.