基于蒙特卡罗树搜索的无人机自主制导系统设计

Apichart Vasutapituks, Edwin K P Chong
{"title":"基于蒙特卡罗树搜索的无人机自主制导系统设计","authors":"Apichart Vasutapituks, Edwin K P Chong","doi":"10.1109/ICBIR54589.2022.9786433","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an online path-planning algorithm using a variation of Monte Carlo tree search (MCTS) for navigating intelligently unmanned aerial vehicles (UAVs) to track mobile ground targets, called the P-UAV algorithm. The proposed algorithm employs a non-myopic method applied to a partially observable Markov decision process (POMDP) model, accounting for long-term decision making. Our algorithm integrates a heuristic technique to efficiently generate paths. The algorithm yields to parallel processing methods to significantly enhance its computational performance, making it suitable for realtime implementation. Simulation experiments show that our path-planning algorithm is efficient and achieves good exploration-exploitation tradeoff in finding a near-optimal solution despite the very large search space.","PeriodicalId":216904,"journal":{"name":"2022 7th International Conference on Business and Industrial Research (ICBIR)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of Autonomous UAV Guidance System Using Monte Carlo Tree Search\",\"authors\":\"Apichart Vasutapituks, Edwin K P Chong\",\"doi\":\"10.1109/ICBIR54589.2022.9786433\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose an online path-planning algorithm using a variation of Monte Carlo tree search (MCTS) for navigating intelligently unmanned aerial vehicles (UAVs) to track mobile ground targets, called the P-UAV algorithm. The proposed algorithm employs a non-myopic method applied to a partially observable Markov decision process (POMDP) model, accounting for long-term decision making. Our algorithm integrates a heuristic technique to efficiently generate paths. The algorithm yields to parallel processing methods to significantly enhance its computational performance, making it suitable for realtime implementation. Simulation experiments show that our path-planning algorithm is efficient and achieves good exploration-exploitation tradeoff in finding a near-optimal solution despite the very large search space.\",\"PeriodicalId\":216904,\"journal\":{\"name\":\"2022 7th International Conference on Business and Industrial Research (ICBIR)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 7th International Conference on Business and Industrial Research (ICBIR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICBIR54589.2022.9786433\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 7th International Conference on Business and Industrial Research (ICBIR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICBIR54589.2022.9786433","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了一种在线路径规划算法,该算法使用蒙特卡罗树搜索(MCTS)的变体来导航智能无人机(uav)跟踪移动地面目标,称为P-UAV算法。该算法将非短视方法应用于部分可观察马尔可夫决策过程(POMDP)模型,考虑长期决策。我们的算法集成了一种启发式技术来有效地生成路径。该算法采用并行处理方法,大大提高了算法的计算性能,适合于实时实现。仿真实验表明,尽管搜索空间非常大,但路径规划算法是有效的,并且在寻找接近最优解方面取得了良好的探索-开发权衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design of Autonomous UAV Guidance System Using Monte Carlo Tree Search
In this paper, we propose an online path-planning algorithm using a variation of Monte Carlo tree search (MCTS) for navigating intelligently unmanned aerial vehicles (UAVs) to track mobile ground targets, called the P-UAV algorithm. The proposed algorithm employs a non-myopic method applied to a partially observable Markov decision process (POMDP) model, accounting for long-term decision making. Our algorithm integrates a heuristic technique to efficiently generate paths. The algorithm yields to parallel processing methods to significantly enhance its computational performance, making it suitable for realtime implementation. Simulation experiments show that our path-planning algorithm is efficient and achieves good exploration-exploitation tradeoff in finding a near-optimal solution despite the very large search space.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信