时钟与细胞周期耦合系统的周期控制

S. Almeida, M. Chaves, F. Delaunay
{"title":"时钟与细胞周期耦合系统的周期控制","authors":"S. Almeida, M. Chaves, F. Delaunay","doi":"10.1145/3365953.3365956","DOIUrl":null,"url":null,"abstract":"The mammalian clock and cell cycle are two essential biological oscillators. In this work we investigate the coupling of these oscillators via non-linear dynamical modeling. We use previously developed reduced models of these systems and study a molecular interaction of MPF (mitosis promoting factor) repression by the CLOCK:BMAL1 protein complex, via induction of the repressor wee1. Furthermore, we propose an hypothesis whereby the clock responds to cell cycle Growth Factors (GFs) via a pathway involving the non-essential cell cycle complex cyclin D/cdk4 and study this interaction in the context of unidirectional clock → cell cycle coupling. We observe 1:1, 3:2, 4:3, 5:4 ratios of clock to cell cycle period and identify GF and the coupling strength cb as decisive control parameters for the system's state of synchronization. Synchronization ratios differing from 1:1, namely 3:2 and 5:4, have been observed in cells treated with the corticosteroid Dexamethasone (Dex). Here, we study Dex application and are able to reproduce the induction of ratios differing from 1:1. Finally, because slowing down the cell cycle is very relevant in the context of cancer therapies, we devise particular protocols of cell cycle period control with the use of clock inputs that are successful in substantially slowing down the cell cycle by the use of the system's synchronization dynamics, obtaining 2:3, 3:4, 4:5 ratios of clock to cell cycle period.","PeriodicalId":158189,"journal":{"name":"Proceedings of the Tenth International Conference on Computational Systems-Biology and Bioinformatics","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Period control of the coupled clock and cell cycle systems\",\"authors\":\"S. Almeida, M. Chaves, F. Delaunay\",\"doi\":\"10.1145/3365953.3365956\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The mammalian clock and cell cycle are two essential biological oscillators. In this work we investigate the coupling of these oscillators via non-linear dynamical modeling. We use previously developed reduced models of these systems and study a molecular interaction of MPF (mitosis promoting factor) repression by the CLOCK:BMAL1 protein complex, via induction of the repressor wee1. Furthermore, we propose an hypothesis whereby the clock responds to cell cycle Growth Factors (GFs) via a pathway involving the non-essential cell cycle complex cyclin D/cdk4 and study this interaction in the context of unidirectional clock → cell cycle coupling. We observe 1:1, 3:2, 4:3, 5:4 ratios of clock to cell cycle period and identify GF and the coupling strength cb as decisive control parameters for the system's state of synchronization. Synchronization ratios differing from 1:1, namely 3:2 and 5:4, have been observed in cells treated with the corticosteroid Dexamethasone (Dex). Here, we study Dex application and are able to reproduce the induction of ratios differing from 1:1. Finally, because slowing down the cell cycle is very relevant in the context of cancer therapies, we devise particular protocols of cell cycle period control with the use of clock inputs that are successful in substantially slowing down the cell cycle by the use of the system's synchronization dynamics, obtaining 2:3, 3:4, 4:5 ratios of clock to cell cycle period.\",\"PeriodicalId\":158189,\"journal\":{\"name\":\"Proceedings of the Tenth International Conference on Computational Systems-Biology and Bioinformatics\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Tenth International Conference on Computational Systems-Biology and Bioinformatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3365953.3365956\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Tenth International Conference on Computational Systems-Biology and Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3365953.3365956","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

哺乳动物的生物钟和细胞周期是两个重要的生物振荡器。在这项工作中,我们通过非线性动力学建模来研究这些振子的耦合。我们使用先前开发的这些系统的简化模型,并研究了CLOCK:BMAL1蛋白复合物通过诱导抑制因子wee1抑制MPF(有丝分裂促进因子)的分子相互作用。此外,我们提出了一个假设,即时钟通过涉及非必需细胞周期复合物cyclin D/cdk4的途径响应细胞周期生长因子(GFs),并在单向时钟→细胞周期耦合的背景下研究这种相互作用。我们观察到时钟与细胞周期的比例为1:1、3:2、4:3和5:4,并确定GF和耦合强度cb是系统同步状态的决定性控制参数。在皮质类固醇地塞米松(Dex)处理的细胞中,同步率不同于1:1,即3:2和5:4。在这里,我们研究了Dex的应用,并能够重现不同于1:1的比例的诱导。最后,由于减缓细胞周期在癌症治疗的背景下是非常相关的,我们设计了使用时钟输入的细胞周期控制的特定方案,通过使用系统的同步动力学,成功地大大减缓了细胞周期,获得了2:3,3:4,4:5的时钟与细胞周期周期的比例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Period control of the coupled clock and cell cycle systems
The mammalian clock and cell cycle are two essential biological oscillators. In this work we investigate the coupling of these oscillators via non-linear dynamical modeling. We use previously developed reduced models of these systems and study a molecular interaction of MPF (mitosis promoting factor) repression by the CLOCK:BMAL1 protein complex, via induction of the repressor wee1. Furthermore, we propose an hypothesis whereby the clock responds to cell cycle Growth Factors (GFs) via a pathway involving the non-essential cell cycle complex cyclin D/cdk4 and study this interaction in the context of unidirectional clock → cell cycle coupling. We observe 1:1, 3:2, 4:3, 5:4 ratios of clock to cell cycle period and identify GF and the coupling strength cb as decisive control parameters for the system's state of synchronization. Synchronization ratios differing from 1:1, namely 3:2 and 5:4, have been observed in cells treated with the corticosteroid Dexamethasone (Dex). Here, we study Dex application and are able to reproduce the induction of ratios differing from 1:1. Finally, because slowing down the cell cycle is very relevant in the context of cancer therapies, we devise particular protocols of cell cycle period control with the use of clock inputs that are successful in substantially slowing down the cell cycle by the use of the system's synchronization dynamics, obtaining 2:3, 3:4, 4:5 ratios of clock to cell cycle period.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信