公交出行时间的不确定性可视化分析方法

IF 3.8 3区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Weixin Zhao , Guijuan Wang , Zhong Wang , Liang Liu , Xu Wei , Yadong Wu
{"title":"公交出行时间的不确定性可视化分析方法","authors":"Weixin Zhao ,&nbsp;Guijuan Wang ,&nbsp;Zhong Wang ,&nbsp;Liang Liu ,&nbsp;Xu Wei ,&nbsp;Yadong Wu","doi":"10.1016/j.visinf.2022.06.002","DOIUrl":null,"url":null,"abstract":"<div><p>Bus travel time is uncertain due to the dynamic change in the environment. Passenger analyzing bus travel time uncertainty has significant implications for understanding bus running errors and reducing travel risks. To quantify the uncertainty of the bus travel time prediction model, a visual analysis method about the bus travel time uncertainty is proposed in this paper, which can intuitively obtain uncertain information of bus travel time through visual graphs. Firstly, a Bayesian encoder–decoder deep neural network (BEDDNN) model is proposed to predict the bus travel time. The BEDDNN model outputs results with distributional properties to calculate the prediction model uncertainty degree and provide the estimation of the bus travel time uncertainty. Second, an interactive uncertainty visualization system is developed to analyze the time uncertainty associated with bus stations and lines. The prediction model and the visualization model are organically combined to better demonstrate the prediction results and uncertainties. Finally, the model evaluation results based on actual bus data illustrate the effectiveness of the model. The results of the case study and user evaluation show that the visualization system in this paper has a positive impact on the effectiveness of conveying uncertain information and on user perception and decision making.</p></div>","PeriodicalId":36903,"journal":{"name":"Visual Informatics","volume":"6 4","pages":"Pages 1-11"},"PeriodicalIF":3.8000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2468502X22000638/pdfft?md5=ccdb87f99aecb534c2895ffeed825848&pid=1-s2.0-S2468502X22000638-main.pdf","citationCount":"4","resultStr":"{\"title\":\"A uncertainty visual analytics approach for bus travel time\",\"authors\":\"Weixin Zhao ,&nbsp;Guijuan Wang ,&nbsp;Zhong Wang ,&nbsp;Liang Liu ,&nbsp;Xu Wei ,&nbsp;Yadong Wu\",\"doi\":\"10.1016/j.visinf.2022.06.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Bus travel time is uncertain due to the dynamic change in the environment. Passenger analyzing bus travel time uncertainty has significant implications for understanding bus running errors and reducing travel risks. To quantify the uncertainty of the bus travel time prediction model, a visual analysis method about the bus travel time uncertainty is proposed in this paper, which can intuitively obtain uncertain information of bus travel time through visual graphs. Firstly, a Bayesian encoder–decoder deep neural network (BEDDNN) model is proposed to predict the bus travel time. The BEDDNN model outputs results with distributional properties to calculate the prediction model uncertainty degree and provide the estimation of the bus travel time uncertainty. Second, an interactive uncertainty visualization system is developed to analyze the time uncertainty associated with bus stations and lines. The prediction model and the visualization model are organically combined to better demonstrate the prediction results and uncertainties. Finally, the model evaluation results based on actual bus data illustrate the effectiveness of the model. The results of the case study and user evaluation show that the visualization system in this paper has a positive impact on the effectiveness of conveying uncertain information and on user perception and decision making.</p></div>\",\"PeriodicalId\":36903,\"journal\":{\"name\":\"Visual Informatics\",\"volume\":\"6 4\",\"pages\":\"Pages 1-11\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2468502X22000638/pdfft?md5=ccdb87f99aecb534c2895ffeed825848&pid=1-s2.0-S2468502X22000638-main.pdf\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Visual Informatics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468502X22000638\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Visual Informatics","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468502X22000638","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 4

摘要

由于环境的动态变化,公交行驶时间具有不确定性。乘客分析公交出行时间的不确定性对理解公交运行错误和降低出行风险具有重要意义。为了量化公交出行时间预测模型的不确定性,本文提出了一种公交出行时间不确定性的可视化分析方法,该方法可以通过可视化图形直观地获取公交出行时间的不确定性信息。首先,提出了一种贝叶斯编码器-解码器深度神经网络(BEDDNN)模型来预测公交行驶时间。BEDDNN模型输出具有分布特性的结果,用于计算预测模型的不确定性程度,并提供公交车行驶时间不确定性的估计。其次,开发了一个交互式不确定性可视化系统,用于分析公交车站和线路的时间不确定性。将预测模型与可视化模型有机地结合起来,更好地展示预测结果和不确定性。最后,基于实际客车数据的模型评价结果验证了模型的有效性。案例研究和用户评价结果表明,本文提出的可视化系统对传递不确定信息的有效性、对用户感知和决策产生了积极的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A uncertainty visual analytics approach for bus travel time

Bus travel time is uncertain due to the dynamic change in the environment. Passenger analyzing bus travel time uncertainty has significant implications for understanding bus running errors and reducing travel risks. To quantify the uncertainty of the bus travel time prediction model, a visual analysis method about the bus travel time uncertainty is proposed in this paper, which can intuitively obtain uncertain information of bus travel time through visual graphs. Firstly, a Bayesian encoder–decoder deep neural network (BEDDNN) model is proposed to predict the bus travel time. The BEDDNN model outputs results with distributional properties to calculate the prediction model uncertainty degree and provide the estimation of the bus travel time uncertainty. Second, an interactive uncertainty visualization system is developed to analyze the time uncertainty associated with bus stations and lines. The prediction model and the visualization model are organically combined to better demonstrate the prediction results and uncertainties. Finally, the model evaluation results based on actual bus data illustrate the effectiveness of the model. The results of the case study and user evaluation show that the visualization system in this paper has a positive impact on the effectiveness of conveying uncertain information and on user perception and decision making.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Visual Informatics
Visual Informatics Computer Science-Computer Graphics and Computer-Aided Design
CiteScore
6.70
自引率
3.30%
发文量
33
审稿时长
79 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信