使用深度特征和集合自动检测红色反射图像中的视力疾病

M. H. Nunes, João Dallyson S. Almeida, I. F. S. D. Silva, Geraldo Braz Júnior
{"title":"使用深度特征和集合自动检测红色反射图像中的视力疾病","authors":"M. H. Nunes, João Dallyson S. Almeida, I. F. S. D. Silva, Geraldo Braz Júnior","doi":"10.5753/sbcas.2023.229638","DOIUrl":null,"url":null,"abstract":"O Teste de Brückner, popularmente conhecido como o exame do reflexo vermelho, é um método simples e indolor de diagnóstico cujo objetivo é detectar patologias oculares. Observando o reflexo retiniano vermelho, com o auxílio de um equipamento chamado oftalmoscópio direto, é possível identificar características das estruturas internas do olho que podem indicar possíveis problemas de saúde ocular. Para identificar a presença de patologias em imagens de reflexo vermelho, essa metodologia utiliza descritores de características baseados em aprendizado profundo e classificadores. Os experimentos realizados utilizando a rede neural convolucional DeepLoc em conjunto com um ensemble dos classificadores Regressão Logística, Random Forest e SVM alcançaram uma acurácia de 93,20%, sensibilidade de 84,50% e especificidade de 93,20%.","PeriodicalId":122965,"journal":{"name":"Anais do XXIII Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2023)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detecção automática de doenças da visão em imagens de reflexo vermelho utilizando Deep Features e Ensemble\",\"authors\":\"M. H. Nunes, João Dallyson S. Almeida, I. F. S. D. Silva, Geraldo Braz Júnior\",\"doi\":\"10.5753/sbcas.2023.229638\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"O Teste de Brückner, popularmente conhecido como o exame do reflexo vermelho, é um método simples e indolor de diagnóstico cujo objetivo é detectar patologias oculares. Observando o reflexo retiniano vermelho, com o auxílio de um equipamento chamado oftalmoscópio direto, é possível identificar características das estruturas internas do olho que podem indicar possíveis problemas de saúde ocular. Para identificar a presença de patologias em imagens de reflexo vermelho, essa metodologia utiliza descritores de características baseados em aprendizado profundo e classificadores. Os experimentos realizados utilizando a rede neural convolucional DeepLoc em conjunto com um ensemble dos classificadores Regressão Logística, Random Forest e SVM alcançaram uma acurácia de 93,20%, sensibilidade de 84,50% e especificidade de 93,20%.\",\"PeriodicalId\":122965,\"journal\":{\"name\":\"Anais do XXIII Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2023)\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anais do XXIII Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2023)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5753/sbcas.2023.229638\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XXIII Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2023)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/sbcas.2023.229638","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

bruckner测试,俗称红色反射测试,是一种简单、无痛的诊断方法,其目的是检测眼部疾病。在一种叫做直接眼镜的设备的帮助下观察红色视网膜反射,就有可能识别出眼睛内部结构的特征,这些特征可能表明眼睛健康问题。为了识别红色反射图像中的病理,该方法使用了基于深度学习的特征描述符和分类器。采用DeepLoc卷积神经网络结合logistic回归、随机森林和SVM分类器进行实验,准确率为93.20%,灵敏度为84.50%,特异性为93.20%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detecção automática de doenças da visão em imagens de reflexo vermelho utilizando Deep Features e Ensemble
O Teste de Brückner, popularmente conhecido como o exame do reflexo vermelho, é um método simples e indolor de diagnóstico cujo objetivo é detectar patologias oculares. Observando o reflexo retiniano vermelho, com o auxílio de um equipamento chamado oftalmoscópio direto, é possível identificar características das estruturas internas do olho que podem indicar possíveis problemas de saúde ocular. Para identificar a presença de patologias em imagens de reflexo vermelho, essa metodologia utiliza descritores de características baseados em aprendizado profundo e classificadores. Os experimentos realizados utilizando a rede neural convolucional DeepLoc em conjunto com um ensemble dos classificadores Regressão Logística, Random Forest e SVM alcançaram uma acurácia de 93,20%, sensibilidade de 84,50% e especificidade de 93,20%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信