33.9用于2G/3G/LTE/NR射频功率放大器实现130MHz包络跟踪带宽和10W输出功率的混合开关电源调制器

Dongsu Kim, Jun-Suk Bang, Jongbeom Baek, Seungchan Park, Young-Ho Jung, Jae-Yeol Han, Ik-Hwan Kim, Sung-Youb Jung, Takahiro Nomiyama, Ji-Seon Paek, Jongwoo Lee, T. Cho
{"title":"33.9用于2G/3G/LTE/NR射频功率放大器实现130MHz包络跟踪带宽和10W输出功率的混合开关电源调制器","authors":"Dongsu Kim, Jun-Suk Bang, Jongbeom Baek, Seungchan Park, Young-Ho Jung, Jae-Yeol Han, Ik-Hwan Kim, Sung-Youb Jung, Takahiro Nomiyama, Ji-Seon Paek, Jongwoo Lee, T. Cho","doi":"10.1109/ISSCC42613.2021.9365986","DOIUrl":null,"url":null,"abstract":"Envelope tracking (ET) is a key technology improving efficiency of RF power amplifiers (PAs) and battery lifetime in mobile handsets. It has been commercialized since 4G LTE era, and is also being employed in 5G NR handsets. A supply modulator (SM) is a circuit generating power supplies of RF PAs for ET and average power tracking (APT) operations. Currently, the maximum channel BW and supported ET BW of 5G NR handset is 100MHz [1]–[4]. In a short time, over 100MHz BW will be necessary to support intra-band contiguous carrier aggregation cases of n77C/n78C/n79C in 3GPP standard [5]. The required instantaneous maximum output power of SM is about 10W which is calculated by the following parameters: 26dBm output power by power class 2 (PC2), 2dB loss of RF front-end module (FEM) due to complex operating band combinations (EN-DC for non-standalone mode, NE-DC, 2CA/3CA), 6dB higher instantaneous power due to peak-to-average power ratio (PAPR) at 1 resource block (RB), 1dB margin, and poor PA efficiency of around 33% (worst example) due to high carrier frequency of 5GHz at n79 band. The poor PA efficiency can be relaxed by high voltage PA design beyond 5V. In [1], a supply modulator with boosted output larger than battery voltage $(V_{BAT})$ is proposed, and the designed PA with 30% higher voltage shows 10% higher efficiency and broader BW owing to low impedance transformation ratio from $50 \\Omega$ and small parasitic output capacitance of power cell. The challenge is how to design a supply modulator for 5G NR that can achieve both wide ET BW and high output voltage/power capability, while satisfying high efficiency, low receiver-band noise, short transition time, and multi-mode/standard operation.","PeriodicalId":371093,"journal":{"name":"2021 IEEE International Solid- State Circuits Conference (ISSCC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"33.9 A Hybrid Switching Supply Modulator Achieving 130MHz Envelope-Tracking Bandwidth and 10W Output Power for 2G/3G/LTE/NR RF Power Amplifiers\",\"authors\":\"Dongsu Kim, Jun-Suk Bang, Jongbeom Baek, Seungchan Park, Young-Ho Jung, Jae-Yeol Han, Ik-Hwan Kim, Sung-Youb Jung, Takahiro Nomiyama, Ji-Seon Paek, Jongwoo Lee, T. Cho\",\"doi\":\"10.1109/ISSCC42613.2021.9365986\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Envelope tracking (ET) is a key technology improving efficiency of RF power amplifiers (PAs) and battery lifetime in mobile handsets. It has been commercialized since 4G LTE era, and is also being employed in 5G NR handsets. A supply modulator (SM) is a circuit generating power supplies of RF PAs for ET and average power tracking (APT) operations. Currently, the maximum channel BW and supported ET BW of 5G NR handset is 100MHz [1]–[4]. In a short time, over 100MHz BW will be necessary to support intra-band contiguous carrier aggregation cases of n77C/n78C/n79C in 3GPP standard [5]. The required instantaneous maximum output power of SM is about 10W which is calculated by the following parameters: 26dBm output power by power class 2 (PC2), 2dB loss of RF front-end module (FEM) due to complex operating band combinations (EN-DC for non-standalone mode, NE-DC, 2CA/3CA), 6dB higher instantaneous power due to peak-to-average power ratio (PAPR) at 1 resource block (RB), 1dB margin, and poor PA efficiency of around 33% (worst example) due to high carrier frequency of 5GHz at n79 band. The poor PA efficiency can be relaxed by high voltage PA design beyond 5V. In [1], a supply modulator with boosted output larger than battery voltage $(V_{BAT})$ is proposed, and the designed PA with 30% higher voltage shows 10% higher efficiency and broader BW owing to low impedance transformation ratio from $50 \\\\Omega$ and small parasitic output capacitance of power cell. The challenge is how to design a supply modulator for 5G NR that can achieve both wide ET BW and high output voltage/power capability, while satisfying high efficiency, low receiver-band noise, short transition time, and multi-mode/standard operation.\",\"PeriodicalId\":371093,\"journal\":{\"name\":\"2021 IEEE International Solid- State Circuits Conference (ISSCC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Solid- State Circuits Conference (ISSCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSCC42613.2021.9365986\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Solid- State Circuits Conference (ISSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC42613.2021.9365986","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

包络跟踪(ET)技术是提高手机射频功率放大器(pa)效率和电池寿命的关键技术。从4G LTE时代开始,就已经实现了商用化,目前正在5G NR手机上使用。电源调制器(SM)是为ET和平均功率跟踪(APT)操作产生RF PAs电源的电路。目前,5G NR手机的最大信道BW和支持的ET BW为100MHz[1] -[4]。在短时间内,需要超过100MHz的BW来支持3GPP标准中n77C/n78C/n79C的带内连续载波聚合情况[5]。SM所需的瞬时最大输出功率约为10W,由以下参数计算:功率等级2 (PC2)的输出功率为26dBm,由于复杂的工作频段组合(EN-DC用于非独立模式,NE-DC, 2CA/3CA),射频前端模块(FEM)的损耗为2dB,由于1资源块(RB)的峰值平均功率比(PAPR),瞬时功率高6dB,余量为1dB,由于n79频段的5GHz载波频率高,导致PA效率差,约为33%(最坏的例子)。通过5V以上的高压PA设计,可以缓解PA效率差的问题。在文献[1]中,提出了一种升压输出大于电池电压$(V_{BAT})$的电源调制器,由于功率电池的阻抗变换比$50 \Omega$低,功率电池的寄生输出电容小,使得电压提高30%的电源调制器效率提高10%,BW宽。面临的挑战是如何设计5G NR的电源调制器,既能实现宽ET BW,又能实现高输出电压/功率能力,同时满足高效率、低接收频带噪声、短过渡时间和多模式/标准运行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
33.9 A Hybrid Switching Supply Modulator Achieving 130MHz Envelope-Tracking Bandwidth and 10W Output Power for 2G/3G/LTE/NR RF Power Amplifiers
Envelope tracking (ET) is a key technology improving efficiency of RF power amplifiers (PAs) and battery lifetime in mobile handsets. It has been commercialized since 4G LTE era, and is also being employed in 5G NR handsets. A supply modulator (SM) is a circuit generating power supplies of RF PAs for ET and average power tracking (APT) operations. Currently, the maximum channel BW and supported ET BW of 5G NR handset is 100MHz [1]–[4]. In a short time, over 100MHz BW will be necessary to support intra-band contiguous carrier aggregation cases of n77C/n78C/n79C in 3GPP standard [5]. The required instantaneous maximum output power of SM is about 10W which is calculated by the following parameters: 26dBm output power by power class 2 (PC2), 2dB loss of RF front-end module (FEM) due to complex operating band combinations (EN-DC for non-standalone mode, NE-DC, 2CA/3CA), 6dB higher instantaneous power due to peak-to-average power ratio (PAPR) at 1 resource block (RB), 1dB margin, and poor PA efficiency of around 33% (worst example) due to high carrier frequency of 5GHz at n79 band. The poor PA efficiency can be relaxed by high voltage PA design beyond 5V. In [1], a supply modulator with boosted output larger than battery voltage $(V_{BAT})$ is proposed, and the designed PA with 30% higher voltage shows 10% higher efficiency and broader BW owing to low impedance transformation ratio from $50 \Omega$ and small parasitic output capacitance of power cell. The challenge is how to design a supply modulator for 5G NR that can achieve both wide ET BW and high output voltage/power capability, while satisfying high efficiency, low receiver-band noise, short transition time, and multi-mode/standard operation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信