数字卫星通信的矢量神经网络

M. Ibnkahla, Francis Castanie
{"title":"数字卫星通信的矢量神经网络","authors":"M. Ibnkahla, Francis Castanie","doi":"10.1109/ICC.1995.524521","DOIUrl":null,"url":null,"abstract":"Conventional techniques used for identification and equalization of nonlinear M-ary PSK digital satellite channels are based on linear or nonlinear filtering devices (e.g. tapped delay line equalizers, Volterra series approaches). This paper uses a new technique based on the vector neural network (VNN) and Kohonen (1989) self organizing feature map. We have used a VNN for adaptive equalization and identification of the satellite channel. The decision process is performed by a Kohonen map.","PeriodicalId":241383,"journal":{"name":"Proceedings IEEE International Conference on Communications ICC '95","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Vector neural networks for digital satellite communications\",\"authors\":\"M. Ibnkahla, Francis Castanie\",\"doi\":\"10.1109/ICC.1995.524521\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Conventional techniques used for identification and equalization of nonlinear M-ary PSK digital satellite channels are based on linear or nonlinear filtering devices (e.g. tapped delay line equalizers, Volterra series approaches). This paper uses a new technique based on the vector neural network (VNN) and Kohonen (1989) self organizing feature map. We have used a VNN for adaptive equalization and identification of the satellite channel. The decision process is performed by a Kohonen map.\",\"PeriodicalId\":241383,\"journal\":{\"name\":\"Proceedings IEEE International Conference on Communications ICC '95\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings IEEE International Conference on Communications ICC '95\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICC.1995.524521\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings IEEE International Conference on Communications ICC '95","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICC.1995.524521","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

用于识别和均衡非线性M-ary PSK数字卫星信道的传统技术是基于线性或非线性滤波装置(例如抽头延迟线均衡器,Volterra系列方法)。本文采用了一种基于向量神经网络(VNN)和Kohonen(1989)自组织特征映射的新技术。我们使用VNN对卫星信道进行自适应均衡和识别。决策过程由Kohonen图执行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Vector neural networks for digital satellite communications
Conventional techniques used for identification and equalization of nonlinear M-ary PSK digital satellite channels are based on linear or nonlinear filtering devices (e.g. tapped delay line equalizers, Volterra series approaches). This paper uses a new technique based on the vector neural network (VNN) and Kohonen (1989) self organizing feature map. We have used a VNN for adaptive equalization and identification of the satellite channel. The decision process is performed by a Kohonen map.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信