{"title":"新设计超轻核心结构的发展","authors":"T. Nojima, Kazuya Saito","doi":"10.1299/JSMEA.49.38","DOIUrl":null,"url":null,"abstract":"By folding a thin flat sheet with periodically set slits or punched out portions into the third dimension, ultra-lightweight strong and functional core models are newly devised. The basic idea of this modeling arises from the application of origami technique to engineering. Based on the space filling models, fundamental flat cores and skew type sponge cores have been newly developed. By applying these models, such modified core models as curved cores and 3D honeycomb core are newly devised.","PeriodicalId":170519,"journal":{"name":"Jsme International Journal Series A-solid Mechanics and Material Engineering","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"77","resultStr":"{\"title\":\"Development of Newly Designed Ultra-Light Core Structures\",\"authors\":\"T. Nojima, Kazuya Saito\",\"doi\":\"10.1299/JSMEA.49.38\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"By folding a thin flat sheet with periodically set slits or punched out portions into the third dimension, ultra-lightweight strong and functional core models are newly devised. The basic idea of this modeling arises from the application of origami technique to engineering. Based on the space filling models, fundamental flat cores and skew type sponge cores have been newly developed. By applying these models, such modified core models as curved cores and 3D honeycomb core are newly devised.\",\"PeriodicalId\":170519,\"journal\":{\"name\":\"Jsme International Journal Series A-solid Mechanics and Material Engineering\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"77\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jsme International Journal Series A-solid Mechanics and Material Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1299/JSMEA.49.38\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jsme International Journal Series A-solid Mechanics and Material Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1299/JSMEA.49.38","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Development of Newly Designed Ultra-Light Core Structures
By folding a thin flat sheet with periodically set slits or punched out portions into the third dimension, ultra-lightweight strong and functional core models are newly devised. The basic idea of this modeling arises from the application of origami technique to engineering. Based on the space filling models, fundamental flat cores and skew type sponge cores have been newly developed. By applying these models, such modified core models as curved cores and 3D honeycomb core are newly devised.