基于小波模极大多重分形分析的振动信号异常检测

Zhiguo Zhang, Xue Liu, Hongping Wang
{"title":"基于小波模极大多重分形分析的振动信号异常检测","authors":"Zhiguo Zhang, Xue Liu, Hongping Wang","doi":"10.1109/ICEICT.2019.8846448","DOIUrl":null,"url":null,"abstract":"A method for detecting abnormality of telemetry vibration signal based on multi-fractal analysis of wavelet modulus maxima was proposed to solve the complexity, non-stationary nonlinearly of frequency domain analysis. First, zero drift correction and trend item elimination are performed on the vibration signal. Then the wavelet modulus maximum multifractal analysis method is used to decompose and multifractal analysis of vibration signals. Finally, the characteristic parameters are input to the SVM classifier, and the anomaly detection of the telemetry vibration signal is performed according to the classification result. The measured data verifies the effectiveness of the method.","PeriodicalId":382686,"journal":{"name":"2019 IEEE 2nd International Conference on Electronic Information and Communication Technology (ICEICT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Anomaly Detection of Vibration Signals based on Wavelet Modulus Maximal Multifractal Analysis\",\"authors\":\"Zhiguo Zhang, Xue Liu, Hongping Wang\",\"doi\":\"10.1109/ICEICT.2019.8846448\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A method for detecting abnormality of telemetry vibration signal based on multi-fractal analysis of wavelet modulus maxima was proposed to solve the complexity, non-stationary nonlinearly of frequency domain analysis. First, zero drift correction and trend item elimination are performed on the vibration signal. Then the wavelet modulus maximum multifractal analysis method is used to decompose and multifractal analysis of vibration signals. Finally, the characteristic parameters are input to the SVM classifier, and the anomaly detection of the telemetry vibration signal is performed according to the classification result. The measured data verifies the effectiveness of the method.\",\"PeriodicalId\":382686,\"journal\":{\"name\":\"2019 IEEE 2nd International Conference on Electronic Information and Communication Technology (ICEICT)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 2nd International Conference on Electronic Information and Communication Technology (ICEICT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEICT.2019.8846448\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 2nd International Conference on Electronic Information and Communication Technology (ICEICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEICT.2019.8846448","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种基于小波模极大值多重分形分析的遥测振动信号异常检测方法,解决了频域分析的复杂性、非平稳非线性问题。首先对振动信号进行零漂校正和趋势项消除。然后采用小波模极大多重分形分析方法对振动信号进行分解和多重分形分析。最后将特征参数输入到SVM分类器中,根据分类结果对遥测振动信号进行异常检测。实测数据验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Anomaly Detection of Vibration Signals based on Wavelet Modulus Maximal Multifractal Analysis
A method for detecting abnormality of telemetry vibration signal based on multi-fractal analysis of wavelet modulus maxima was proposed to solve the complexity, non-stationary nonlinearly of frequency domain analysis. First, zero drift correction and trend item elimination are performed on the vibration signal. Then the wavelet modulus maximum multifractal analysis method is used to decompose and multifractal analysis of vibration signals. Finally, the characteristic parameters are input to the SVM classifier, and the anomaly detection of the telemetry vibration signal is performed according to the classification result. The measured data verifies the effectiveness of the method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信