神经影像学研究中的拓扑信号处理

Yuan Wang, R. Behroozmand, L. Johnson, L. Bonilha, J. Fridriksson
{"title":"神经影像学研究中的拓扑信号处理","authors":"Yuan Wang, R. Behroozmand, L. Johnson, L. Bonilha, J. Fridriksson","doi":"10.1109/ISBIWorkshops50223.2020.9153363","DOIUrl":null,"url":null,"abstract":"Electroencephalography (EEG) is an important neuroimaging tool for understanding network disorders caused by neuroanatomical malformation or damage such as epilepsy and post-stroke aphasia. Topological data analysis (TDA) can decode patterns in EEG signals that are not captured by standard temporal and spectral features but at the same time reveal important information on the underlying brain processes of clinical interest. The heterogeneity of conditions associated with brain network disorders renders it highly challenging to develop statistical methods for analyzing topological features in patients’ EEG signals. In this paper, we advance a generalized topological signal processing framework for extracting and analyzing topological features in EEG signals. The framework is applied to study EEG correlates of neural deficits in post-stroke aphasia patients.","PeriodicalId":329356,"journal":{"name":"2020 IEEE 17th International Symposium on Biomedical Imaging Workshops (ISBI Workshops)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Topological Signal Processing in Neuroimaging Studies\",\"authors\":\"Yuan Wang, R. Behroozmand, L. Johnson, L. Bonilha, J. Fridriksson\",\"doi\":\"10.1109/ISBIWorkshops50223.2020.9153363\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electroencephalography (EEG) is an important neuroimaging tool for understanding network disorders caused by neuroanatomical malformation or damage such as epilepsy and post-stroke aphasia. Topological data analysis (TDA) can decode patterns in EEG signals that are not captured by standard temporal and spectral features but at the same time reveal important information on the underlying brain processes of clinical interest. The heterogeneity of conditions associated with brain network disorders renders it highly challenging to develop statistical methods for analyzing topological features in patients’ EEG signals. In this paper, we advance a generalized topological signal processing framework for extracting and analyzing topological features in EEG signals. The framework is applied to study EEG correlates of neural deficits in post-stroke aphasia patients.\",\"PeriodicalId\":329356,\"journal\":{\"name\":\"2020 IEEE 17th International Symposium on Biomedical Imaging Workshops (ISBI Workshops)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 17th International Symposium on Biomedical Imaging Workshops (ISBI Workshops)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBIWorkshops50223.2020.9153363\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 17th International Symposium on Biomedical Imaging Workshops (ISBI Workshops)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBIWorkshops50223.2020.9153363","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

脑电图(EEG)是了解癫痫、脑卒中后失语等神经解剖畸形或损伤引起的网络障碍的重要神经影像学工具。拓扑数据分析(TDA)可以解码脑电图信号中未被标准时间和频谱特征捕获的模式,同时揭示临床感兴趣的潜在脑过程的重要信息。脑网络疾病相关条件的异质性使得开发用于分析患者脑电图信号拓扑特征的统计方法具有很高的挑战性。本文提出了一种用于脑电信号拓扑特征提取和分析的广义拓扑信号处理框架。应用该框架研究脑卒中后失语症患者神经功能缺损的脑电图相关因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Topological Signal Processing in Neuroimaging Studies
Electroencephalography (EEG) is an important neuroimaging tool for understanding network disorders caused by neuroanatomical malformation or damage such as epilepsy and post-stroke aphasia. Topological data analysis (TDA) can decode patterns in EEG signals that are not captured by standard temporal and spectral features but at the same time reveal important information on the underlying brain processes of clinical interest. The heterogeneity of conditions associated with brain network disorders renders it highly challenging to develop statistical methods for analyzing topological features in patients’ EEG signals. In this paper, we advance a generalized topological signal processing framework for extracting and analyzing topological features in EEG signals. The framework is applied to study EEG correlates of neural deficits in post-stroke aphasia patients.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信