基于CPU时间计费的异构无服务器平台的功能内存优化

R. Cordingly, Sonia Xu, W. Lloyd
{"title":"基于CPU时间计费的异构无服务器平台的功能内存优化","authors":"R. Cordingly, Sonia Xu, W. Lloyd","doi":"10.1109/IC2E55432.2022.00019","DOIUrl":null,"url":null,"abstract":"Serverless Function-as-a-Service (FaaS) platforms often abstract the underlying infrastructure configuration into the single option of specifying a function's memory reservation size. This resource abstraction of coupling configurations options (e.g. vCPUs, memory, disk), combined with the lack of profiling, leaves developers to make ad hoc decisions on how to configure functions. Solutions are needed to mitigate exhaustive brute force searches of large parameter input spaces to find optimal configurations which can incur high costs. To address these challenges, we propose CPU Time Accounting Memory Selection (CPU-TAMS). CPU-TAMS is a workload agnostic memory selection method that utilizes CPU time accounting principles and regression modeling to recommend memory settings that reduce function runtime and subsequently, cost. Comparing CPU-TAMS to eight existing selection methods, we find that CPU-TAMS finds maximum value memory settings with only 8% runtime and 5% cost error compared to brute force testing while only requiring a single profiling run to evaluate function resource requirements. We adapt CPU-TAMS for use on four commercial FaaS platforms demonstrating efficacy to optimize function memory configurations where platforms feature heterogeneous infrastructure management policies.","PeriodicalId":415781,"journal":{"name":"2022 IEEE International Conference on Cloud Engineering (IC2E)","volume":"149 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Function Memory Optimization for Heterogeneous Serverless Platforms with CPU Time Accounting\",\"authors\":\"R. Cordingly, Sonia Xu, W. Lloyd\",\"doi\":\"10.1109/IC2E55432.2022.00019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Serverless Function-as-a-Service (FaaS) platforms often abstract the underlying infrastructure configuration into the single option of specifying a function's memory reservation size. This resource abstraction of coupling configurations options (e.g. vCPUs, memory, disk), combined with the lack of profiling, leaves developers to make ad hoc decisions on how to configure functions. Solutions are needed to mitigate exhaustive brute force searches of large parameter input spaces to find optimal configurations which can incur high costs. To address these challenges, we propose CPU Time Accounting Memory Selection (CPU-TAMS). CPU-TAMS is a workload agnostic memory selection method that utilizes CPU time accounting principles and regression modeling to recommend memory settings that reduce function runtime and subsequently, cost. Comparing CPU-TAMS to eight existing selection methods, we find that CPU-TAMS finds maximum value memory settings with only 8% runtime and 5% cost error compared to brute force testing while only requiring a single profiling run to evaluate function resource requirements. We adapt CPU-TAMS for use on four commercial FaaS platforms demonstrating efficacy to optimize function memory configurations where platforms feature heterogeneous infrastructure management policies.\",\"PeriodicalId\":415781,\"journal\":{\"name\":\"2022 IEEE International Conference on Cloud Engineering (IC2E)\",\"volume\":\"149 3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Cloud Engineering (IC2E)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IC2E55432.2022.00019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Cloud Engineering (IC2E)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IC2E55432.2022.00019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

无服务器功能即服务(FaaS)平台通常将底层基础设施配置抽象为指定功能的内存保留大小的单个选项。这种耦合配置选项(例如vcpu、内存、磁盘)的资源抽象,再加上缺乏分析,使得开发人员不得不对如何配置功能做出特别的决定。解决方案需要减少穷举暴力搜索大参数输入空间,以找到可能导致高成本的最佳配置。为了解决这些挑战,我们提出了CPU时间会计内存选择(CPU- tams)。CPU- tams是一种与工作负载无关的内存选择方法,它利用CPU时间核算原则和回归建模来推荐内存设置,从而减少功能运行时并随后降低成本。将CPU-TAMS与现有的八种选择方法进行比较,我们发现CPU-TAMS与蛮力测试相比,发现最大值内存设置只有8%的运行时间和5%的成本错误,同时只需要运行一次分析来评估功能资源需求。我们将CPU-TAMS应用于四个商业FaaS平台,展示了优化功能内存配置的有效性,其中平台具有异构基础设施管理策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Function Memory Optimization for Heterogeneous Serverless Platforms with CPU Time Accounting
Serverless Function-as-a-Service (FaaS) platforms often abstract the underlying infrastructure configuration into the single option of specifying a function's memory reservation size. This resource abstraction of coupling configurations options (e.g. vCPUs, memory, disk), combined with the lack of profiling, leaves developers to make ad hoc decisions on how to configure functions. Solutions are needed to mitigate exhaustive brute force searches of large parameter input spaces to find optimal configurations which can incur high costs. To address these challenges, we propose CPU Time Accounting Memory Selection (CPU-TAMS). CPU-TAMS is a workload agnostic memory selection method that utilizes CPU time accounting principles and regression modeling to recommend memory settings that reduce function runtime and subsequently, cost. Comparing CPU-TAMS to eight existing selection methods, we find that CPU-TAMS finds maximum value memory settings with only 8% runtime and 5% cost error compared to brute force testing while only requiring a single profiling run to evaluate function resource requirements. We adapt CPU-TAMS for use on four commercial FaaS platforms demonstrating efficacy to optimize function memory configurations where platforms feature heterogeneous infrastructure management policies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信