Viktor Leis, F. Scheibner, A. Kemper, Thomas Neumann
{"title":"实用同步的艺术","authors":"Viktor Leis, F. Scheibner, A. Kemper, Thomas Neumann","doi":"10.1145/2933349.2933352","DOIUrl":null,"url":null,"abstract":"The performance of transactional database systems is critically dependent on the efficient synchronization of in-memory data structures. The traditional approach, fine-grained locking, does not scale on modern hardware. Lock-free data structures, in contrast, scale very well but are extremely difficult to implement and often require additional indirections. In this work, we argue for a middle ground, i.e., synchronization protocols that use locking, but only sparingly. We synchronize the Adaptive Radix Tree (ART) using two such protocols, Optimistic Lock Coupling and Read-Optimized Write EXclusion (ROWEX). Both perform and scale very well while being much easier to implement than lock-free techniques.","PeriodicalId":298901,"journal":{"name":"International Workshop on Data Management on New Hardware","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"83","resultStr":"{\"title\":\"The ART of practical synchronization\",\"authors\":\"Viktor Leis, F. Scheibner, A. Kemper, Thomas Neumann\",\"doi\":\"10.1145/2933349.2933352\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The performance of transactional database systems is critically dependent on the efficient synchronization of in-memory data structures. The traditional approach, fine-grained locking, does not scale on modern hardware. Lock-free data structures, in contrast, scale very well but are extremely difficult to implement and often require additional indirections. In this work, we argue for a middle ground, i.e., synchronization protocols that use locking, but only sparingly. We synchronize the Adaptive Radix Tree (ART) using two such protocols, Optimistic Lock Coupling and Read-Optimized Write EXclusion (ROWEX). Both perform and scale very well while being much easier to implement than lock-free techniques.\",\"PeriodicalId\":298901,\"journal\":{\"name\":\"International Workshop on Data Management on New Hardware\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"83\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Workshop on Data Management on New Hardware\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2933349.2933352\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on Data Management on New Hardware","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2933349.2933352","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The performance of transactional database systems is critically dependent on the efficient synchronization of in-memory data structures. The traditional approach, fine-grained locking, does not scale on modern hardware. Lock-free data structures, in contrast, scale very well but are extremely difficult to implement and often require additional indirections. In this work, we argue for a middle ground, i.e., synchronization protocols that use locking, but only sparingly. We synchronize the Adaptive Radix Tree (ART) using two such protocols, Optimistic Lock Coupling and Read-Optimized Write EXclusion (ROWEX). Both perform and scale very well while being much easier to implement than lock-free techniques.